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3Preface
The purpose of this thesis was to derive a set of equations

that exactly determine the scattered EM :ields from a cavity in

an infinite conducting plane. The chosen approach was to use a

set of integral equations for the field components inside the

cavity and a set of integral equations for the field components

g outside the cavity and couple them together at the junction. A

Green's function with Neumann boundary conditions was used

£outside the cavity. The thesis contains derivations of all the

major equations used.

I Three people gave me extensive mathematical consultation

during the preparation of the thesis and I want to thank them for

their contributions. They are: the sponsor, Dr. Arthur

3 Yaghjian, without whom the singularities would not have been

properly evaluated; Lt Col Baker, one of AFIT's finest

I instructors, who provided insight to several mathematical

peculiarities within the thesis; and especially my advisor, Capt

Greg Warhola, without whom this thesis may not have been

5completed error free. Capt Warhola's hard work and dedication

and persistance upon perfection took their toll, but will always

Ibe remembered and appreciated.
3 I also wish to thank my parents who were the major

contributors towards my bachelor's degree; I couldn't have done

3 this if I hadn't earned my BSEE.

I especially want to thank the only person who gave more
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than I did toward the completion of this thesis. The sacrifices5 and understanding my wife, Tina, contributed during this work are

! indescribable and her support kept me going.
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I Abstract

The purpose of this thesis is to determine the scattered

electromagnetic fields and radar cross section from a two-

dimensional cavity in a perfectly electric conducting infinite

plane. This is accomplished by deriving a coupled set of

I Fredholm integral equations of the second kind. A set of

5 integral equations outside the cavity and a set of integral

equations inside the cavity are coupled together at the

3 interface. The Fredholm integral equations of the second kind

for the outside of the cavity use a Green's function with Neumann

I boundary conditions to avoid an integration over the infinite

i plane for a transverse electric incident plane wave. An example

problem is introduced and numerically solved to test the

* application of the newly derived equations.
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Coupled Integral Equation Solutions for Two-Dimensional
Bistatic TE Scatter From a Conducting

Cavity-Backed Infinite Plane

3 I. Introduction

Electromagnetic (EM) waves exhibit the phenomena of

reflection, transmission, absorption, interference,

3 diffraction, and refraction (13,1i,4). In free space,

absorption, diffraction, and refraction may be ignored (14).

I With this single and precise assumption, EM energy (such as a

I radar pulse) propagates through space until it impinges upon an

obstruction (such as an aircraft) in its path. The obstruction

scatters the electromagnetic wave in many directions and the

energy associated with the scattered portion of the EM wave

I then propagates in new directions. Though the energy is

3 normally scattered in all directions, it is desirable to know

the amount of energy scattered in various directions.

5 Solutions to this problem in the form of the scattered electric

and magnetic fields are of interest to many sectors of today's

I society, particularly to the military (6).

3 It is not a trivial problem to determine the exact

solution for the scatteredI EM fields. The size and shape of

3 the obstruction must be taken into account when solving for the

scattered fields, but these are only two of the possible

variables. The object's conductivity, the incident wave's

3 frequency, and the permeability and permittivity of the space

I
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surrounding the object all contribute to the solution of the

I scattered fields (6).

5Closed form solutions of the EM scattering problem can be

generated for only a very limited class of problems (12, 14).

3 For general scattering objects, however, an approximate

solution is needed to predict the scattered fields. With high

Ispeed computer systems (or low cost personal type computers)

5 good numerical approximations are obtainable by solving the

full scattered field equations (12).

The Problem

3 Modern jet aircraft use air intake and exhaust structures

that can appear (to the EM wave) to be open ended wave guides

I or apertures. If one wishes to reduce the energy backscattered

by these apertures, it is necessary to determine both the

amount of EM energy scattered by them and the directions into

3 which the energy is scattered. This thesis makes another step

toward understanding this three-dimensional problem by

5 determining the solution to a corresponding, but simpler, two-

dimensional problem (26). One benefit from solving this

simpler problem is the two-dimensional problem can be used to

3 approximate the scattering from gaps and cracks in panels that

comprise reflector antennas and radar targets.

3 The associated two-dimensional model of the problem that

will be solved in this thesis is the determination of the

bistatic EM fields scattered from an infinite plane containing

3 a cavity (26). For example, if in three dimensions the

3 2
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infinite plane is the xz plane and the coordinate axes are

I placed as in Figure 1, then the cross-sectional shape of the

5cavity is constant along the z-axis. This is the specific

problem ultimately considered in this thesis.

5Integral equations can be derived to describe the

electromagnetic fields scattered in a problem of this type.

I These equations are developed in this thesis. Once derived,

5computer software will be described which numerically

implements this formulation. In particular, predictions for

5two-dimensional scattering from an infinite plane containing a

rectangular shaped cavity will be obtained.

Scop of the Problem

5It is desired to determine the EM fields scattered from a

perfectly electric conducting infinite plane containing a

cavity of arbitrary cross section (i.e. a generic cavity).

3 Surface integral equations have been derived by Stratton,

Poggio and Miller and others (21, 15, 23, 24) that provide for

5m the solution of scattered fields from objects of finite size

using a free space Green's function as the kernel. To avoid

1 integrations over the unbounded infinite plane, Green's

3 functions which satisfy Dirichlet boundary conditions (the

Green's function vanishes at the boundary) or Neumann boundary

*conditions (the normal derivative of the Green's function

vanishes at the boundary) can be employed.

The integral equations using a Green's function with

5Neumann boundary equations will be derived and used in this

U3
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thesis. Once derived, these equations will be used to solve an

3example problem: a two dimensional rectangular cavity.

I
I
U

I
I

I Y
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I

I Figure 1. Cross Sectional View of a Generic Cavity in an
Infinite Plane Closed at Infinity.

I
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Assumption

3 The problem is simplified by assuming that the infinite

plane is a perfect electric conductor (i.e. the conductivity of

5the plane is infinite). The plane is suspended in free space

where the incident wave will not be impeded (i.e. the relative

Ipermeability, Pr, and the relative permittivity, Er are

both equal to one, Pr Cr 1). Though a perfect

conductor of this type does not actually exist, the

5mathematical assumption of a PEC (perfect electric conductor)

is a good approximation and the amount of work involved in

Iassuming the material is not perfect is considerably more

difficult (6).

The assumption that the relative permeability and

5permittivity are exactly equal to one means that the medium

through which the EM wave propagates does not impede the wave

(14). In actuality, Er for air is approximately 1.0006 at

3atmospheric pressure and 24 0 C (11:58) and Pr for air is

approximately 1.0000004 at the same conditions (11:216). Since

3 both Er and Pr are functions of temperature, pressure, and

material, they will be functions of position in space. It is

Inot possible to determine the exact permittivity and

3permeability for all places at all times but it is known that

for air, they will be very close to one (14).

3One final assumption for solving this problem is that the

source of EM waves is far enough away that the wave front is

Nplanar as it impinges upon the plane.

I
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3 Approach

The general geometry initially considered in this problem

I is a three dimensional generic cavity in a PEC (perfectly

3 electrically conducting) infinite plane (see Figure 1). Within

the thesis the specific geometry of a two-dimensional

Srectangular channel is introduced as the cavity, the integral

equations inside and outside of the cavity are then solved to

produce the fields scattered from the channel. For purposes of

3 derivation, the cavity will be considered generic. The chosen

approach to solving this problem is to separate the upper half

5 space from the cavity and allow the two regions to be coupled

at their common boundary, hereafter referred to as the

"aperture". This method was introduced by Harrington and Mautz

3 in 1976 and lends itself well to this type of problem (5).

By considering the scatterer to be a PEC plane with a

3 cavity, two sets of equations need to be derived: one set for

the half space above the PEC plane and one set for the cavity.

The first step used to solve this problem was to derive from

3 Maxwell's Equations a set of integral equations needed to

determine currents (field components) in the aperture and along

3 the cavity walls. From the currents, the scattered fields are

obtained by an integration. An integral equation formulation

I- was used because it reduces, by one dimension, the

3 dimensionality of the problem and represents an exact solution.

Other theoretical approaches such as physical optics,

6
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geometrical optics, and the geometrical theory of diffraction,

etc., require major analytic approximations (6,7, 18, 19).

Once the integral equations are derived, a computer

I program is introduced that solves the equations for the unknown

magnetic surface current density, M, from various aspect angles

and scattered angles. With the magnetic surface current

3density in hand, the scattered fields are then determined by an

integration of H. An equation for the RCS (radar cross

section) is then derived and evaluated to determine the RCS of

*the channel.

With the integral equation formulation and the computer

3program, data is generated and plotted to show the RCS as a

function of several variables *or a representative chosen

I geometry: that of a two-dimensional rectangular cavity. The

I AFIT computer facilities were used to run the computer program.

A personal computer was used to plot the data generated from

I the computer program.

Before preceding to the development of the equotions, a

I summarization of the current knowledge is necessary.

I Summary of Current Knowledge

Integral equations for finding the electric and magnetic

fields scattered from a three-dimensional object have been

derived and used for several problems. Two of ti.t &Uost noLable

derivations are by J.A. Stratton (20) and Poggio and Miller

3 (15). These equations are normally called the Electric Field

7
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Integral Equation (EFIE) and the Magnetic Field Integral

3 Equation (MFIE) (19).

In three dimensions, both the EFIE and the MFIE contain a

singular kernel in convergent integrals; however the MFIE is

3 normally more numerically stable and slightly less complicated

to implement (22). For open conductors such as an antenna

aperture, the MFIE becomes degenerate and the EFIE is normally

used. In the early 1980's the EFIE and the MFIE were combined

or auqmented to eliminate spurious resonances which can pollute

3 the solution of an exterior scattering problem (24, 23). These

integral equations may be used to determine the scattered EM

I fields for many types of problems.

* It has been possible to determine the scattered fields

from some of the simplest geometries since just after the

3 introduction of Maxwell's electromagnetic field equations (11).

Only recently, high speed computers have allowed the use of the

I MFIE and EFIE to determine the fields scattered from more

complicated geometries (12:2). Several computer codes have

been written using the MFIE or EFIE to help determine the

3 fields scattered from some specific geometries (6). Using

these codes, the scattered fields from several geometries have

I been determined. Most of these are simple three dimensional

bodies. The open literature does not provide any solutions to

most of the more complex shapes. Some representations of

3 scattered fields that have been obtained using surface integral

equations are:

*8
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t) The perfectly conducting cube for monostatic
scattering using both the MFIE and the EFIE (25).

2) An infinitely long, perfectly conducting circular
cylinder for monostatic scattering using both the EFIE and
the MFIE (21).

3) An infinite perfectly conducting half plane with short
"bumps" (16) for monostatic scattering and using only the
EFIE.

4) Various generic targets within stratified media (as
oppocse to free space) using only the MFIE (17).

5) Perfectly conducting bodies of revolution using both
the EFIE and the MFIE in the monostatic case (8).

In order to use the MFIE or EFIE in our stated problem of

interest, either an integration on an unbounded domain is

necessary or else an approximation must be made by truncating

the plane at some finite distance from the cavity. The

I necessary approximation is not considered valid in an "exact"

solution. Therefore, a set of equations are derived herein

that avoids the unbounded domain without the use of an

3 approximation.

* Preview

A coupled set of Fredholm integral equations of the second

kind are derived in Chapter 2. Once obtained, these integral

equations will be simplified in Chapter 3 by reducing them to

two-dimensional space and providing a specific incident

field. Chapter 4 provides a way to solve the coupled set of

Fredholm integral equations numerically; the Method of Moments

5 is used. In Chapter 5, a specific cavity is introduced to test

9
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the equations. The specific cavity is a two-dimensional

rectangular channel. A convenient representation of the

scattered fields is the RCS (radar cross section) and an

equation for RCS is derived in Chapter 6. Chapter 7 provides a

quick description of the computer program used to approximate

the equations derived in Chapters 2 and 3 to determine the RCS

derived in Chapter 6. Chapter 8 gives the results of the

tested cavity and Chapter 9 gives the overall conclusions and

recommendations for future work. Three appendices are included

at the end of the thesis. Appendix A contains the computer

program written to numerically solve the integral equations and

eventually determine the RCS from the test (rectangular)

cavity. Appendix B consists of some of the output from running

the computer program. A description of a model designed and

* built to further test the equations by making laboratory

measurements of the scattered fields is in Appendix C.

The first major step, however is to derive the coupled set

of Fredholm integral equations needed to solve for the surface

currents and charges, and this is the subject of the next

*chapter.

I10



I
I
I

II. Derivation of the Integral EquationsI-
The Upper Half Space Region

The propagation of electromagnetic energy and the

fundamental laws of electromagnetics are governed by Maxwell's

equations (4, i, 14,20). To determine the magnetic and electric

fields at any point x = (x,y,z) at a time, t, one may begin

with Maxwell's equations and derive a more useful set of

Iequations for the particular problem being considered (20).

For chis reason, the integral equations used to solve the

stated problem will be derived from Maxwell's equationz.

In time harmonic form with exp(-iwt) time dependence,

Maxwell's equations are (11:376):

I

V x E = iwpH - I (

V x H = -iweE + J (2)

V E = p/e (3)

V : Pm/p (4)

-- where

E Electric Field VectorI Magnetic Field Vector
: Magnetic Current Volume Density

J Electric Current Volume Density
w Operating Angular Frequency
p permeability of the medium

= permittivity of the medium
p Electric Charge Volume Density

Pm Magnetic Charge Volume Density

1i
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All of the fields (E and H), currents (I and J), and

3 charges (p and Pm) in Eqs (1) through (4) are functions

of position (i.e. E:E(x, y, z):E(x), H:H(x, y, Z):H(x), etc.) For

I simplicity, the position variables will not be indicated until

it is nzcessary to distinguish between separate positions in

space.

At this point it should be noted that the magnetic

current, I, and the magnetic charge, Pm, are fictitious

quantities that can exist mathematically, but have not yet been

physically measured. The electric and magnetic fields in Eqs

(I) through (4) are considered generated from the sources J, I,

pm, and p. The continuity equations relating currents

and charges of Eqs (I) through (4) are (20:464):

V J = iwp (5)
I and

IV an = iWPm (6)

Taking the curl of Eq (i) yields

V x V x E = iwp(V x H) - V x I (7)I
Using Eq (2) in Eq (7) and simplifying the result gives an

equation for the electric field without the magnetic field.

V x V x E - k 2 E :iwpJ- V x (8)

* where

R2 = w 2cp

I



I

I Similarly for the magnetic field,

V x V x H - k2 H = iwe I - V x J (9)

1An application of a vector Green's identity with the

*proper Kernel (or Green's Function) will yield two integral

representations of the electric and magnetic fields in terms of

volume and surface currents and charge densities. From these,

integral equations are derived to obtain the surface current

and charge densities. The vector analog to the scaler Green's

second identity is (20: 464):

I fff( V x V x P - P- V xVx Q ) dv

V

ff P pX V X Q _ Q X V X p ).An ds (10)

I S

A
where n is the unit normal pointing out of a regular region, V,

bounded by the surface, S. Eq (10) is valid for any vector

functions of position P and Q having the proper regularity.

Both P and Q need to be twice continuously differentiable on

the surface and within the volume being considered (15: 161).

For the vector P, either E or H is chosen. Choosing the

most advantageous vector Q depends upon the geometry being

considered. A generic closed surface in free space lends

itself well to the free space Green's function for Q.

* 13



U

That is:.

X= (_x;x ) a (ii)
where

exp (ikr)
_ ) = (12)

r

r x - x I

= (x-x,)2 + (y-y,)2 + (2-z1)2 (13)

A
a = arbitrary unit vector

A

The unit vector, a, is arbitrary for two reasons: the free

space Green's function is omnidirectional and the vector is

common to all of the elements in Eq (10) (20:251-252). For the

half space above the PEC plane, the vector Q is chosen to be

the half space Green's function:

A

= (x;x') a + 0(x;_') a = G(x;x ) a (14)

where

- , -y', z ) (15)

and O(x;x') is as defined in Eq (12).

14
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Using Eq (14) for Q and E(x) for P in Eq (10) yields:

I
fIT I G(x;x' )a -VI x VI x _ _I

v - E(x,) V, x V, x G(Axx')a ] dv

M E f[(251) x V I G (x5;x1)a^ G G(3;x x ' E Nx' n)S ) id'I

(t6)

I in which V' represents differentiation with respect to x'.

From Maxwell's equations, V'x E is known as a function of

H and I and Eq (8) gives V'x V'x E; the only other expressions

that need to be analyzed are V'x G(x;x') and V'x V' x G(x;x')a.

From basic vector identities:I
V'x [(x;_x,)a] V'CG(x;x')] x a (17)

i and

V'x V'x G(x;_x') a = V' [V'' (G(x;x'))- V'2 [G(x;x')] (18)

Dealing strictly with Eq (17) and the integrand in the

left side of Eq (16) (recall that a is a constant unit vector):

I [(_ x V' x (G a)] n = n x E) x V'G] (19)

-- and

3 QG(x;2')a x VIx E(x,). a [V'x E(x,) x n] G(x;x') (20)

15

I



Using Eq (i) in Eq (20) for V' x E(x') and simplifying the

l result yields:

A

V'x E(x') n a np[ x H(x') G(x;x')

A- [ x (x,)] G(x;x') (21)

To further evaluate Eqs (18) and (19), it is necessary to

determine V'G(x;x') and V' 2G(x;x).

U '0~' G(x;x' ) aG(x;x' ) 8G(x;x')A A 8G (A22)
VG(x;X) x + ay' y + z(22)

d[exp(ikr)]/r 8r 8r ar
A A A
x + y + z

dr ax' ay' az'

d[exp(is("))/r a ar +a ]
A A A

+, X + _-y + - z
draay a (23)

Breaking Eq (23) into its prominent pieces yields:

d (exp( ikcr)] /r i
= ik - r 0(x;x' ) (24)

dr r

1ik-- ] O(x;') (25)

I
I
* 1
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and continuing,I
ar (x-x')
- z- (26)
ax' r

i r -- (z-z ' (2)
8r ( -2)

az' r

where, in Eqs (26) and (27), r may replaced everywhere by r.

I Continuing,

3 8r (y-y')

ay' r

Iand

8; (y+y')
-- (29)

ay' r

I Thus, combining Eqs (24) through (29) into Eq (23) yields:

V'G(x;x') : ik - I r

+ k (x) 2(y+y') 9"- ] (30)r r

3 where

r x - = (x-x')x + (y-y,)9 + (zZ')

r :x-x' =(x-x'), + (y+y')A + (z-z')A

17
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Similarly, without displaying all of the steps, the equation

for V' 2 G(x;x') is given by:

I [ a2 G(x;x') a2 G(x;x') 82 G(x;x') V,2[G(x;x , ) ; a + + -a
ax 2  a1 2  az' 2

I [a2 0(x;x,) a2 0(X;X') a2 0(x;x')

i xI 2  a' 2 3z ,2

since a is a constant unit vector.

3 How,

a2 0(x;x , ) ar 2 a2 0(x;x' )  a0(x;x') a2 r

:_ -- ] F" + - (32)

ax' 2  [ax' ar 2  ar ax' 2

I Equations for the second derivatives of §(x;x') with respect to

y ' and z' and the second derivatives of O(x;_') with respect to

x', y' and z' are all similar to Eq (32).

3 The component parts of Eq (32) are

ar (x-x )
(33)3 ax' r

5 a2r t (X-X') 2

= - (34)

aX' 2  r r3

18
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and

x; ik - - ( ; _ (35 )

and, finally,

a 2 0(x;' 1, ) __QS___I r -i JOx2 ' + r (36)iK -- 03 3 ) +  (36)
8 r 2  r r 2

£ Putting Eqs (33) through (36) into Eq (32) and simplifying the

result gives:

a2 O(x;x , ) (x-x') 2  (x-x')2

= O(x;x') I-C2 - 3ik
3 x L 2  r 3

+ (x-x') 2  
-1 ik

+ 3 -r- + (37)
4; r 2  rI

Similarly,

I 2 0(x; x,) (y-y)2 (y-y, )2

O(x;x') -- 3iR3 ay' 2  - r2  r3

(y-y' )2 ik

+ 3 + - (38)
r4  r

II
1 1
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and

I a2 0(x;_x' ) (z-z' )2 (z-z' )2

Saz '2  r2  0

+ 3(- +
r4 r 2  r

I
for the y' and z' derivatives of O(x;x').

The second derivatives of 0(x;x') with respect to x', y',

and z' are nearly identical to Eqs (37), (38), and (39)

respectively. These derivatives are:

a2 0(x;X , ) r (x-x,)2 (x-X')2

ax, 2 ;2 LR -3

I(X-x') 2
+ 3 - - + (40)

a2 Q(_x;_, ) (y+y, )2 (y+y,)2

I ay ' 2  = i(x;x') [-r 2  - 3i r

5 + ~~~ (y+y' )2 - I + 1+ 3 -4 ;2 + (41

I 
2 O(x; '-) (Z-Z,)2 (z-z,)2

a 2 O(X;) - 31k

+ (z-z') i ik(42)

20
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Using Eqs (37) through (42) in Eq (31) and noting that

3 (x-x') 2 + (yy,) 2 + (z-z') 2 = r2  and (X-x') 2 + (y+y,) 2 +

(z-z') r, gives the final, simple, result for V' 2 G(x;x')

I as:

V' 2 Gx;x') -k 2 0(x;x,) - M2 0(x;_c,) = -k 2 G(x;x')

for X' and x t V (43)

Eq (43) is an important result. It allows the use of the

lll half space Green's function, G(x;x'), in the same equations

used by J.A. Stratton in his derivation of the electric and

3 magnetic field integral re-r-__entations (20:465). The Stratton

equations were developed with the free space Green's function,

(x;_x') which satisfies V' x V' x 0A k 2 0 a + V'(a'V'0)

3 (20:465). Stratton's results are based on this relation which

is now also satisfied by G as seen by combining Eq (43) with Eq

A A

V'x V'x G(x;_')a k2G(_x;x,) + V, [.V'G(x;x,)]

5 for x X X' and xX x' (44)

l Using the results given in Eq (44) and the development of

Eq (8), the two components for the right hand side of Eq (16)

11 can now be cast in a more useful form. In particular,

121



_~~x V'x V'x E(MI) - a~' ' '

i.[iPJ~x) -V'x 1(3,) + k2E(x')]

a- I 2E(g') - VG(x;A') [Vt, E(31)J

+ Vt. E(M' ) [aiV'G(M;x' )) (45)

3 Eq (3) and Eq (45) are used in Eq (16) along with the

g following identity:

ffJJf (V'x I(x')] G(3;31) dv' ff (A') x I(xN')J G(3;3x '

V S

3+ ff1(31) x V'G(x;x') dv' (46)

I V
An application of the divergence theorem,

Ifff V F dv = ffr . f(x') ds' (47)

*V S

to that result yields:

£ + G(x;x') I ] dv'

I-ff [ iwP(A(g') x H(X')JG(M;x')+(A(x') x E(x')] x _ _NXI

* S

+ (Ax)~']V'G(x;x') ] ds' (48)

22
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where the common factor of the arbitrary constant vector, a has

been removed. (See Eqs (47), (45), (19), and (21).)

The integrand of Eq (48) is singular at r = 0, (i.e.

when (x,y,z) = (x',y',z')). This violates the conditions for

I use of the vector Green's identity, Eq (10), unless the

g singular point is excluded from the volume, V. This

singularity actually helps in the development of solvable

3 equations. A small sphere of radius r, is circumscribed about

Fr lI
S
I

I Figure 2. Exclusion of the Singularity by Enclosing It Within

a Small Sphere of Radius r i .

23
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the point (x,y,z) (see Figure 2) to exclude this point from

V. The outward pointing normal at the surface of this sphere

points toward the center of the sphere (out of the volume) and

along the radius, r i . For points, xI on this small spherical

surface

g(x') = rlr

An element of surface area on the sphere is

ds' = r2 sin(e)dOdo

with spherical coordinate system angles 6 and 0. Using Eq (30)

for V'G(x;x') and taking the limit as r i shrinks to zero, the

integral over the surface of the sphere is:

a f? iT [ ~(xn x E(11)]

+ [(f(x')-(x')](x') - - e r sin)dedo

+ O(r 1 ) (49)

which yields 4w E(x) for vanishing R i, since

E(x,) [n(x) x n(x)] x n_ _ _

Thus, the contribution of the volume integral on the right hand

side of Eq (48) is 4w E(x) due to the volume integral about

24
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the singular point. The electric field at the point

Sx = (x,y,z) in the half space above the scatterer is given by:

I
E(x) = jf iwJ(xI)G(x;x') - I(x') x V'G(x;x')

V

p(x')
+ VIG(x;x' ) - dv'

u6 -I
~ 1f iwJ[x,) x H(x')Gx;x')

4w

S

+[A(Ax')xE(x')]xV'G(x;x') + [n (x).E(xI)]V'G(x;x')]ds'

1(50)
3Note that due to the singularity, the integral over the

volume must be evaluated in the principle value sense, meaning

3that a vanishingly small spherical volume centered at x=x' must

be excluded.

With the choice of the half space Green's function as the

5 kernel in Eq (16), the resulting equation for E(x) when x

approaches the surface of the volume is the same as Eq (50),

provided the surface integral is, too, a principal value

integral. The volume integral remains unchanged since a small

U sphere can always be circumscribed about the point x as it

1approaches S. For the surface integration in Eq (50), a result

due to Yaghjian (23,24) is employed:

2
12
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lim V1O(A;X1) fJ V'O(x;x'1)ds' + 2w() (5a

H SS S

where the + (-) sign corresponds to approaching S from the side

into (out of) which n(x) points and the principal value

integral employs a vanishingly small circular patch. For the

half space Green's function, G(x;x'), contributions with both

signs cancel, leaving Eq (50) intact for x approaching S, with

3 all integrals evaluated in the principal value sense.

A similar procedure may be used to fijid an equation for

3 the magnetic field, H(x), where H(x') is used for the P vector

of Eq (10); an equation similar to Eq (50) may be developed. A

decidedly simpler procedure is to use the concept of duality

3 with Eq (50) (4). Based on the symmetry of Maxwell's

Equations, Table I shows the quantities to be interchanged from

3 Eq (50) to get an equation for H(A).

3 Table I. Duality Variable Interchanges

Quantities

From To

9(A) U(3)

$E H

H -E

SP " Pm

J - !

(4: 98, 99)
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Using Table 1, the H(A) equation becomes:

U.jj [(E(')~~' + J(11) x _ _j '

* V

dv' + - f [i x E x)G (A;xA

S

S-(A(A')xH(x'I)]xV'G(X;x') - En" QSI ) !f Q)]71G (3; )]dss (51)

IEqs (50) and (51) may be further simplified in certain

problems by noting that the volume integrals yield an incident

field for a scattering problem and by defining surface current

3 densities, K(3x) and H(x'), and surface charge densities, a(3')

and am(x' ); based on the outward pointino normai for each

I region considered:

U (x A A(3') x H(x') (52)

3 ~x) n~' x E(x') (53)

n (?') E(x 1 (5)

Using the simplifications noted above leaves:

E(x): - ffI wp;(x I)G (3;x'1) + H(x'I x V'IG (3;x')

+ V'G(x;x') Ids' + Einc(X)

x not on S (56)

27
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and

I
H(_3)= iwcH(x) G(x;x') - K(x') x V'G(x;x')

4w JJ

SI Sa(x'

- m V'G(x;x') ] ds' + HinC(x)

x not on S (57)

3where the superscript "inc" indicates and incident field.

Eqs (56) and (57) are valid for all points within the volume in

I the upper have space of Figure i. When the integrals are

i interpreted in the principal value sense, these equations are

also valid for points on the bounding surface. However, this

3 surface includes not only the plane between the upper and lower

half spaces, but also includes the semicircular "cover", SR, Of

I the upper half space. Fortunately, the Sommerfeld radiation

3conditions (20) make the integrals over SR vanish. The results

for x approaching S are:

!
4E(x) : I iwpK(x,)G(x;x) + H(x') x V'G(x;x')

S

+ V'Gx_x) ds' + Einc(x), x-S
(58)

and

eere
(_ 4 f iwe(x) G(x;x') - K(x') x V'G(x;x')

7 (i') -1

i m VG(x;x3) ds' + Hinc(y), x-,,S

28
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Eqs (56) through (59) are the equations which represent

3 the total electric or magnetic field at any point inside or on

the surface of the upper half space of Figure I in terms of the

Isurface charges, a and am, and the surface currents, K(X') and

M(x'). To find these currents and charges, equations must be

developed to find the fields, currents, and charges inside the

3cavity of Figure 1 because the two spaces are coupled together

at the interface between the surface. Recall, this interface

Ihas been named the aperture.

l Inside the Cavity

Inside the cavity, the free space Green's function in the

* A
a direction may be used for _ (20) and E or V used for P in Eq

1(10). The volume in the integral is the volumt of the cavity

and the qirface is the surface of the cavity. Again, no

sources are found within the cavity and the surface currents

and charges may be modeled as they were in Eqs (52) through

(55). The fields incident to the aperture will induce surface

5currents and charges across the aperture. These surface

currents and charges will generate the fields that are incident

Ito the cavity. In this way, the cavity is coupled to the half

space above the aperture. Using all of the above information,

the electric and magnetic fields inside the cavity are

1

I
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SE(x) f iw _K(x')0(_x;x') + H(x') x V (_ ;_')

S

+ V'(x;x') I ds'

for x not on the surface, S (60)

and

_Lx) iweH(x') 0(x;x') - E(x') x V'O(x;x')

I S

a (x')
I M _ VIJ(2s;_2S ) ds'

for x not on the surface, S (61)

3 To let the observation point approach the surface S bounding

the cavity, Eq (50a) is again employed. The results are:I
3 E(x) f iwPK(x')O(x;x') + H(x') x V _O(x;_1)

4w

S

Ia(x')
+ V'O(x;x') J ds'

i i a(x)
- M(x) x A(x) !_,2 a £

3 for x- S (62a)
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and

H(x )= _ie(' (;' - K(x') x V'O(x;x')
4w!S

3I- a (x,)
,_ x I d ms I

- - K(x) x A(x) -n(x'I2 2

for x-S (62b)a
With Eqs (56) through (62) the fields at any point x can

Ube determined if the incident fields and the surface charges

and currents are known. The next step in the derivation of the

Iintegral equations, therefore, deals with finding the surface

3currents and charges.

3 Finding the Currents and Charges

The currents and charges needed to use Eqs (56) through

1(62) are found by the solution of a coupled set of second kind

3 Fredholm integral equations which will be derived presently.

To help in the computations, Eq (62a) is multiplied by iwc.

5 This allows for the solution of iwcH(x') instead of solving

for M(x') alone. Notice that iwe multiplied by iwp

Iyields -k 2 by Eq (8). It is also more convenient to let the

U
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I
constant 1/4w be part of the Green's functions so that

3 Q(x;x')/4w is referred to everywhere as O(N;X'). Also, let

am/p, from here on, be referred to as am.

I In the equations to follow, Sc refers to the surface of

the cavity excluding the aperture and A refers to the aperture;

as before, S refers to the surface of the upper half plane

3 (which also includes the aperture). For the magnetic current

across the aperture, Eqs (53) and (62a) along with the above

i simplifications yields a second kind Fredholm integral equation

for the current H forced by integrals of the, as yet, unknown

current K and charge a:

I

2 iwEM(x) = n(x) x[ Sf K (')0(A;A')ILE
S C U A

3 - M(X') V' (0; W')ie

I - iwa(x') V'0(x;x') ] ds' (63)

3 where x E A.

Instead of using Eq (62a), Eq (58) could be used to find

Eq (63). However, since Eq (58) is for the upper half space,

I the half space Green's function would be used in place of

3 0(x;X') and the tangential component of the effective incident

electric field across the aperture would be added. Eq (62a) is

3
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chosen in place of Eq (58) since the former involves an

3 integration over the bounded aperture, whereas the latter

requires integration over the unbounded xz plane.

I A further simplification is possible since H(x) - 0 when x

3 is on a perfect electric conductor (4:34). The cavity walls

are assumed to be PEC. Furthermore, to avoid confusion

regarding the normal used in defining quantities in Eqs (52)

through (55), the magnetic current is defined now to be

H(x') :-4 x E(x' ), where - is the unit vector pointed in the

positive direction along the y-axis. Using this definition,

the equation for the magnetic current when x is on the aperture

5 becomes:

i
5 - i wM(x) - 2e  x K(x')(x;x') J

Sc UA

- We A x [Hx)x V 1 0(x5;x ]5 dx'

-w A
I

+ JJ Y x iWa(x') V'O(x;X') ds' x E A (64)

Sc UA

i To find the electric current across the aperture, Eqs (52)

and (59) will be used with the current defined as

IK(x') : x H(x'). The result is
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K Y) x H ic (,) + YAx ff[iwcld(x' )G (x;.x'

S

5-K(x') x V'G(x;x') - a V'G(x;x") ]ds'
I with x E A (65)

(Recall that am/p was earlier redefined as am for simplicity of

presentation.)

3Although this, too, requires integration over the

unbounded xz plane, some means of coupling the incident field

5 into the problem must be employed. It will be explained in the

next chapter how the judicious choice of Green's function,

G(x;x'), combined with other problem specifics is employed to

3 eliminate the integrations over the plane.

For the electric current on the surface of the cavity

5(minus the aperture), Eq (62b) is used in conjunction with Eq

(52). The equation for the electric current in the cavity

becomes:

Ii
3 - K(x) - (3) x Jj [-iwCH(x')0(N;x,) + -K(') x V'0(x;.')

Sc UA

+ a V'o(x;x')l ds'

U with x E Sc (66)

3
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To find an equation for the electric charge density on the

3 surface . the cavity includin, the -pertue, Eq (62a) is use(

in conjunction with Eq (55). Since or is always multiplied by

iw in Eqs (58) through (62), it is appropriate to find an

3 equation for iWa. Again, M(x) 0 when x is on the

surface of a PEC, and n(x) is dependent upon the cavity

5 surface. The equation for iwa is:

SA
2 J JLIA

+ Jf A(2!) k2 K(x'1)'(x;x') ds'

U Sc U A

- f A(_x) iw o(x') VI' (x; x') ds'

Sc U

I with x E Sc U A (67)

5 An analogous equation for arm could be obtained from Eq

(62b) but is not listed here. Eqs (64) through (67) and the

equation for orn are the necessary equations for the surface

g current and charge densities. Each is a second kind Fredholm

integral equation. The equations are coupled and may be viewed

5 as a linear operator, L, acting on the vector of unknowns,

X [M(x), K(x), a(x), am(X)), according to LX = B, where

(0, y x Hinc(x), 0, 0). The operator, L, is a matrix of
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linear operators having second kind Fredhoim operators along

3 t+e 4  -2 6nl A! tern te, s implr, f rm'--! 4 .ons *hich ex..U(,.

charge densities are possible. In one such formulation, the

resulting operator involves a first kind Fredholm operation,

3 inversion of which is possibly ill-posed (2). Another

formulation replaces iwa by Vs -K and iwam by -Vs.M in

3 which Vs is the divergence operator in the surface. These

relations follow directly from Maxwell's equations and are

commonly employed (15) when using surface integral equations.

3 However, the formulation herein is chosen to avoid numerical

differentiation for approximate solutions obtained in a later

3 chapter.

3
I
3
I
I
U
I
I
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3TTI. Roductinn to a Two-dtmensional Problem

The Cavity

For this proilem, a two-dimensional cavity (Figure 1) of

3 arbitrary shape is considered. Along the z-axis, the cross-

sectional shape of the cavity is constant. For such a problem,

the currents and charges, _. K, a, and am, as well as the

5 resulting fields, are independent of z.

This simplificatioz, eliminates integration in the z

3 direction from -o to +w for the surface currents and charges.

It also allows the use of the half space Green's function in

Itwo-dimensions for G(x;x') and the two-dimensional free space

3 1Green's function for *(x;x'). In two-dimensions these Green's

functions are (13):

G(3;3') = wiH~t)(kr) + 1iiH~t)(kF) (68)

3 and

§ = wiHSI)(kr) (69)

Iwhere, now
'S

r [(x-x) + (y-yS)& (70)

; Lx-x )2 + (y+y' )2 1/ (71)

and

IH~l)(kr) is a Hankel function of the first kind of order zero.

I
I
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Dividing Eqs (68) and (69) by 4w will help simplify Eqs (58)

through (61). Thus, the Green's functions are now redefined to

be

G(x;x') - HSI)(r) + - H~i)(R) 
(72)

44

3 and

(;x') - HSI)(kr) (73)

* 4

In two-dimensions, the surface integrals of Eqs (58)

through (61) are now line integrals for finding the "surface"

3 currents and charges.

3The Incident Fields
Assume that the field originates at a long distance from

3 the aperture such that as it impinges upon the apertuze the

field is a plane wave. Further, let the incident field be a TE

I (Transverse Electric Field) plane wave. That is, the electric

3 field is transverse to the z direction at all times. Also, let

the medium above the plane be free space (this has already been

I assumed) and let both the electric and magnetic fields always

be transverse to the direction of propagation. This is a TEM

I (Transverse Electromagnetic) plane wave. For a TE plane wave

I traveling in the TEM mode, the H field is in the z direction.

Referring to Figure 3, ei is the positive angle measured

5 clockwise from the y axis along which the wave propagates.

Such an incident plane wave with exp(-iwt) time dependence

I (assumed at the outset) has spatial dependence governed by

i (4:146):
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With unit magnitude, the incident field is:I
A

HinC(x) : Z exp(-ik[x sin(ei) + y cos(li)]3 (75)

With this incident field and the two-dimensional cavity

discussed above, Eqs (64) through (67) may be simplified. The

5simplifying observations are:

5t. From Eq (54), the magnetic surface charge density, am(x),
is zero for the TE plane wave considered above.

I2. On the PEC, the magnetic surface current density, 14(x), is
zero.

3. The gradient, in primed coordinates, of the Green's
function, V'G(x;x'), has only an A component when either y or
y' equals zero. This is the Heumann boundary condition
discussed in the introduction of the thesis. Therefore,
K(x') x V'G(x;x') =,0 when x' is on the x-axis.

A
4. The gradient of the Green's function never has a z
component in this two-dimensional problem. Therefore,
H(x').V'G(x;x') = 0 for all x'.

5. The three-dimensional surface is now a two-dimensional
contour. The equations to follow will reflect that; thus, Sc
now indicates the contour around the cavity and A indicates the
line across the aperture.

Using these simplifications, the five equations that will be

Iapproximated in the following analysis are:

1 H(x) = Hinc(x) + { iweM(x')G(x;x') dx' (76)

A
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SAI +J19 x iwa(x') V'O(x;x '

SCU A

with x E A (77)

9(25) x Hinc(2!) + xJ.iwEM(x I)G (x;x2s) dx'

A

with x E A (78)

3 ~~n - ~) -~ X) j iwcH(x')O(X;X') dx'

A

I + fK(xP) x V'o(xN;3') dc']

ScU A

with x E Sc (79)
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andI
- fwa(x) n -i(L [ ( _ X .x') x V1 6(x;') dc'

A

I + nQ(S).k 2  K(x')0(x;xi) dc '

5 Sc UA

-f n( ' iwa (x' ) (x;x ) dc'

Sc U A

with x E Sc U A (80)

I Eqs (77) through (80) are a coupled set of Fredholm

integral equations of the second kind for finding the currents

I and charges needed to solve for the scattered fields, using Eq

(76), from the two-dimensional cavity introduced at the

beginning of the chapter. Recall if iwa is replaced by

3 V' -K, as described at the end of Chapter 2, Eq (80) is not

needed. In either case, the equations are specifically

5 designed for use with the TE plane wave of Eq (75). Solutions

of these equations may be approximated numerically by any of

several methods. The chosen method of approximating the

3 solutions to Eqs (77) through (80) is introduced in the next

chapter.

I
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3 IV. Approximate Solution of the Integral Equations

In Eqs (77) through (80), linear operations (the integrals

and vector operations) act on a set of unknowns (the currents

3 and charges) and must be equal to a set of knowns (the incident

fields). If the inverse of the linear operators can be found

and applied to the set of knowns, the set of unknowns can be

determined. The Method of Moments is a reasonably simple means

by which one can approximate such an operator equation for

I numerical solution (3). Eqs (77) through (80) can be solved

using miment methods by using the following approximations:

M
iwEM(x) z E an fn(3)n =

I N
n:

N
i iwa(x) - E Tn Pn(x) (8 )

n=i

3 where an, On, and rn are constants and fn(A), Pn(X), and hn(3)

are functions to be described below.

3The "-" sign in Eq (81) implies approximations because the

numbers M and H are assumed to be finite. As M and M approach

infinity, the summation (right hand side) approaches a smooth

m curve (left hand side) and the "-" can be replaced by an equal

sign. In Eq (81), 1n(3), !n(3), and Pn(X) are basis functions

I
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of position (3:42). The functions _n(x) and hn(x) are vectors

because H(_x) and _(x) are vectors. Using Eq (81) and the

linear operators in Eqs (77) through (80) yields:I
i i H M N N
- iwcH(x) -- - lnanfn(3) EnLIfn(x') + E~nL2_hn(3') + EnL3Pn(x')
2 2 n=i n=i n=i n=i

with x E A (82)

I
N H

(x) - E On n(X) = EanL4_n(X') + Hinc(x)
n=I n=i

with x E A (83)

I
1 1 M H
-_K(x) - E ~n hn(X) = EanL5 n(x') + EnL6hn(')

2 2 n=i n=i n=i

with x E Sc (84)

Ii i H
- iwa(x) z - ETnPn(X) = EUnL7fn(X,) - E~nL8hn(x') + ETnLgPn(X')
2 2 n=i n:i n=1 n:i

with x E Sc U A (85)

The linear operators Li through L9 are all functions of

position. That is, L, = Li(x), L2 = L2 (x) , etc. Further, the

linear ope-ators may be determined by examining the equations

Ifrom which they came: Eqs (77) through (80). For instance,

I
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L f (x') Y x f (x') x V'O(x;x') dx'I-n _- -n _- -

m- A

The method is employed by defining a weighting function,

Wm(XXm), for the specific problem being solved, and taking the

inner product of Wm with each of Eqs (77) through (80); where

the inner product is defined as:

i <W (x, x ), f (x)> = (x,x )f(x) dc' (86)m -m J m

Sc UA

This yields

i..M M
1/2 Ean<Wm,fn(X)> Ean<Wm,Lifn(x')> + E0n<Wm.Lhn(X')>

n=i n1i n=i

H

+ EVn<WmL3Pn(x)>
n=j

with x E A, (87)

~n<Wm, h n (_3) > =an<Wm, Lfn (x')> + <Wm,HLi nc(X)>I with x E A, 

(88)
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and

I N M N
1/2 E£n<Wm,n(X)> = Ean<WmL5fn(3')> + EPn<WmL6hn(X')>

n= n=i ni

with x E Sc, (89)I
N M N

1/2 E'n<WmPn(xy)> = Ean<Wm,L7n( ')> + E~n<WmLBhn(3')>
n~i n~i n=1

[N
+ En<'Wm, L9Pn(X')>

n=i

m with x E Sc U A. (90)

Eqs (87) through (90) allow the currents and charges to be

found using moment methods directly. No matter what the shape

I of the cavity's cross section, Eqs (87) through (90) should

yield a reasonably accurate solution if M and N are chosen

judiciously. However it is advantageous to deal with a

3 specific cross section as opposed to a generic or arbitrary

cross section. For this reason, the specific cavity cross

I section of interest is introduced in the next section.

4
m
I
I
m
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3 V. The Rectangular Cavity

Figure 4 shows the cross section of the cavity whose

scattering properties will be examined here. The rectangular

3 cavity has a width, w, and a depth, d. For purposes of

computation all lengths will be normalized to the width, w.

I Doing so gives an effective width of 1, a depth of d/w, a

wavelength of A/w, etc. The sides of the cavity are

labeled S-, Sd, S+, and A which correspond to surfaces along x

3 -0.5, y = -d, x = +0.5, and the aperture, respectively.

S_ -. .... __ __ _

Figure 4. Cross Section of the Rectangular Cavity Showing

~Width, Depth, Coupling Aperture, Along with the Currents and
Unit Iormals and Their Directions.

I A4
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I On Figure 4, the outward pointing normals are indicated on

each surface. Further, the electric current direction is also

noted. The integrations within the linear operators of Eqs

(87) through (90) are line integrals with respect to positive

arc length around the cavity and across the aperture (21).

ITable II gives a list of variables normalized to the

width. The first column gives the original variable. The

second column gives the normalized variable and the third

column gives the name used in the computations.

I
Table II. Quantities Normalized to the Width

Original Normalized Used
Variable Variable Quantity

w w/w I

x x/w x

y y/w y

z z/w z

d d/w d

A A/w A

R Iw K

I
I

With the geometry indicated in Figure 4, the cavity can be

Ibroken up into N equally sized segments with H of them across

I
48
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I the aperture. If the size of each segment is termed ACn

(actually normalized to w) where AC1 = AC 2  ... -

ACH, the basis functions can be defined as:

I Ae if x is on AC

n - 0 elsewhere

I where the direction, e, associated with fn(x) is the same as

that of the current for each particular segment. For instance,

on the inside of the aperture X(x) is in the A direction.

Similar basis functions are defined for hn and Pn'

Using "point matching" for testing, the weighting

I function, Wm(X;X'), is defined as (3:42)

Wi (X;X') = W(x;x m ) (x - 3m) (92)

Eq (91) reduces the integrals within the linear operations

L i (x), L 2 (x), ... , L9 (x) to integrations over a small segment,

I AC. Eq (9P) replaces the position vector x with the

position vector xm in Eqs (87) through (90). To illustrate,

let r.x;x') be any function that is continuous along the line L

3 and let the line, L, be broken into H segments. Then

I
r(x;x') dx' : E r(x;xI) dx'

L ACn

I
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I
Taking the inner product as defined above yields

f E [ r(x;xl)dx, ] (x-x) dx E r(x;x') dx'

L ACn

If r(x;x') is one of it, h, or p given in Eq (91), only those

I line segments ACn survive on which r is non-zero.

Referring now to the problem at hand, by letting x be

the midpoint of each line segment, ACM, (as m goes from I

to M) and Xn be the midpoint of each line segment ACn (as n

goes from I to N), the integrals over the line segment ACn

I may be approximated by:

Sf (x ; x) dx f f(x ; x ) AC (94)

A~ n

I if ACn is sufficiently small.

3 Using Eqs (91) through (94) and performing the inner

products of Wm with the linear operators operating upon their

3 appropriate functions, Eqs (87) through (90) may be cast in a

more easily solvable form.

I At either y or y' equal to zero, G(Xm;Xn) = 20(Xm;gn).

This fact is used to simplify the equations. It is important

to note that the integrations are line integrals and are

SIndependent of direction across the small segment, AC.
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I Since ACn is always a positive number, the line integration

does not affect the sign of the approximation as defined in Eq

(94). Further, the principle value of the integral over

I V'0(3m;3n) is identically zero (as will be shown) when n=m.

When n:m, the segment ACn is termed a self-patch. The

principle value integrals over the self-patches will now be

examined in more detail.

Self-Patch Integrations

In two-dimensions, V'O(;xf') is

A A

I I (x-x,) + (y-y') (9)

r Lx

NIn Eq (95) the Hankel function of the first Kind order one and

3 the /r term both produce singularities when x:x'. Performing

the integrals in the principle value sense, however, does not

3 produce singularities.

When integrating V'O(x;x')'x along the y-axis, the term

involving x-x' (or xm-xn in the approximation) will 'always

3 multiply the integral by zero when x:x' (or xm=xn). The same

situation is involved when integrating V'y(;x')' along the

3 x-axis, where the (y-y') term always multiplies the integral

by zero when y=y'. Thus, those particular self-patches are

identically zero.

5
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I For the self-patches involving integrations in the x

direction of V'O(M;x').i, a more rigorous proof is necessary.

The same situation applies when integrating in the y direction

of V'(x;x')'. In the following proof, the variable "x" may

be replace by the variable my" to achieve the same result as

long as every "x" is replaced by a "y".

When integrating on a self-patch in the x direction (for

the rectangular channel), y is always equal to y'. Thus,I
Xm+AC/2

V'O(x ;x')* dx' = i m (x -x') ax'
Im 4 Ix x m
ACm m

Xm-AC/2 (96)I

3 Eq (96) is a symmetrical integration of an odd function about

the singularity x'=O. This integration is therefore

identically zero.

3 The integrations over all self patches involving V'(x;x')

have been shown to be equal to zero. All of the self-patches

3 that do not involve a V'O(x;x') term have, instead, only a

(_x;x') term. These integrals do not reduce to zero. Again,

the variable mx" may be replaced by the variable "y" in the

3 following integrals.

5
I
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X3 +AC/2

I fO(x ;kI) dx' -{ H~i)(kIxm-x'I) dx'

3ACm 3 iA/

AC/2

Ii unfH(l)(kcx) dx (97)

0 P~ 0

I E

For small arguments, the asymptotic approximation for

HM is (1:360)

2 2 Z23H 0(i)(z)',, i - ln(z/2) + I + i - y - i - l~/-
w 2w

3+ [ 2 (1-Y) - I J - + O(:4 1n(z)] (8

where y Euler's constant 2: 0.5772156649015 ...

Thus,

C IAc i YAC

fO(x m;x') dx' Z - - - -1)

ACM

+ [ RAC] 3  [2 ][n(kAC/4) - 1/3]

(99)

53



I

I All of the self-patch integrations have now been

3 determined. Those line integrals over sections other than

self-patches will be approximated using Eq (89).I
Solving for the Currents and Charges

Host of the equations used thus far are vector valued.

A

However, these equations can be broken into x and y components

if necessary and a set of equations developed from each of Eqs

3 (88) through (91) and their corresponding earlier equations,

Eqs (T7) through (80).

IThe set of equations corresponding to Eqs (77) and (88)

3 are:

For m = 1,2,3...H where r(xm) = -y

0 = E a n [V'0(3m;Xn)'Y] ACn - IC E On *(xm;Xn)ACn
n:i n:l

2M M+L

+ k 2 E On O(Xm;Xn)ACn + E Tn [V'O(Xm;Xn)*AACn3 n:L+M n:

N

+ E Yn [V'O(Xm;Xn)'A]ACn + am/2 (100)
n :H+ L

* where

L = the number of segments along S- and S+3 H: the number of segments along A and Sd

ft Eq (100) is actually a set of H equations because it applies

for m=1, 2, ... ,H. There are only H equations because xm is not

I
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on the aperture when m > H; Eq (77), and therefore Eq (88), is

3 only good when the observation point (M or x.) is on the

aperture. The set of equations that correspond to Eqs (78) and

1 (89) are:

U For m = i, 2,3,...M where n(_m) Y

-- HinC(xM ) -E a n O(m;Xn) ACn + Om/2 (i0t)
2 n=1I
The set of equations that correspond to Eqs (79) and (90) are:

3 For m = M+i,M+2, ...M+L where n(x 3 ) = -x

M H
0: E an0(Xm;Xn)ACn + E On [V'0(xm;Xn)'Y]ACn + m/2

n-i n=i

I -L 2M H
-Pn[V'0(Xm;Kn)'4]ACn + E- n [V'0(Xm;Xn)' ACn

n=M+L n=L+2M£ (102)

I
For M+L < m < 2M+L where (X m ) :-I

M M
0 : -E n(xm;xn)ACn - On (V'O(xm;Xn)'])ACn - Pm/2

Sn: n=1

I L+M N
+ E On[V'0(_m;Xn).]ACn - E On [V'O(Xm;Xn)'X]ACn
n=:H n:L+2M

(i03)
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For 2M4.1 < m< N where nA) A

0 E - anO(3m;An)ACn - E On [V'0(xm.;n) Y ACn - O/3 fli n=1j

L+H L+ 21
+ E On(V'O(Xm;.En )]ACn + E On [V'O(Mm;En)I1ACnnI n:H+

(104)

And finally, the set of equations that correspond to Eqs (80)

I and (91) are:

5 For 0 < m < H where ntx 3  :y

n=,n[VIK0(m n) 4]ACn + n= Yn[V'O(X,,Xn) ]ACn

7- M+ L H
+ E ~O( 3 ;A)AC - 1(2 E OnO(Mm;.3n)ACIn=M n=2M+L

N
E- r1'(m;n-)~ - rm/2 (105)

For H < m < 14.1 where n -M) = -

0 E n[V'(AmAn)*A)Ac + rn[V'0(3m;An) x ACn
n=1 nZ I

H 2M+L
E ( ~O(3m;3n)AC + R?- E OOM~nA

fl~i n=M+L

+ : n 1V'0 (m An)]ACn - Tm/2 (106)
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For M+L < m < L+2H where A(x m ) = -Y

M M+ L
0 = -E an[V(lXm;xn)'1ACn + E Tn[V'O(Xm;Xn)')ACn

n=1 n:

H+L
E2 P n§(3m;3 n )A (C + XK- E PnO(3,,;x n ) AC:

n - M+ L

UFor L+-2H < m _< N where A(x•) =

M H+ L0 =-E an[V'OlAm;Xn)' "lACn - E vn[V'0l3m;Xnl' lACn
n~l n =I

S2M+L
+ K/2 E -n (Xm;xn )AC - ? nO (Xm;Xn )AC

n-- n--M+ L

2M+ L

- E n[V'O(Xm;Xn)']ACn - rm/2 (108)
n =:+L

Eqs (100) through (108) represent 2NH+M equations and 2N+M

U unknowns. The unknowns are al, a 2 , ... aM, Pi, P29 ... ,vi,

1 2, ... and TH . Each of the unknowns appear in each of the

equations, though several are multiplied by zero. Remember,

3 each of Eqs (100) through (108) are valid for a given set of

xm's. The unknowns may be solved for using matrix techniques.

3 This is easier to see if the equations are set in the following

form:
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I a 0311t 112 (i)(2NH) .1I

21 22 a 0

I (Hot)

.t. . . .:

1 0I 0

L (2N+M) (1) (2N+M) (2N+M)J LN J (109)

3 Where 1mn are determined from Eqs (100) through (108) and

represent the inner products in Eqs (88) through (91). The

3 vector in Eq (109) with the coefficients a, 0, and T naturally

represents the unknowns. The coefficients gm represent the

I incident magnetic field in Eq (108) obtained from Eq (74).

3 Representing Eq (109) as

[In) (an] (gm)

the unknowns by can be found by the inverse operation (or its

equivalent),

3an] = Ilmn]- 1 Cgm] (110)

Once the unknowns, a's, P's, and r's, are determined

numerically, they may be used in Eq (81) to approximate the

currents and charges as functions of position. These

3 approximations may then be used to find the scattered and

total electric and magnetic fields using Eqs (58) and (59),
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respectively, for all points in the half space above the y=O

3 plane and Eqs (60) and (6t), respectively, for all points

inside the cavity. The same approximations used in the

I previous integrals may be used to approximate the integrals in

Eqs (58) and (59). If the radar cross section of the cavity is

desired instead of the scattered fields, an equation needs to

3 be developed to produce it. The required equation is derived

in the next chapter.

5
I
I
I
I
I
U
I
£
I
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I
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3 '!, Radlr Cross Section

In three dimensional space, the RCS (radar cross section)

3 of an obstacle, or scatterer, is defined as the area for which

an "incident wave contains sufficient power to produce, by

omnidirectional radiation, the same back-scattered power

3 density" (4:116). Simply put, RCS is the cross sectional area

that would normally be required to isotropically scatter the

same power as the target radiates toward the receiver. The

mathematical form for RCS can be in terms of the incident and

Iscattered power, Pi and Ps respectively, as in (4:116):

a lim 4r 2  [ (i l)

RCS may also be determined from the field quantities, E and H,

as in (9:157):

a lim 4wr2  2  (12)1r--PoD If 112

where E refers to either E or H.

Though other definitions are possible for RCS, Eqs (tit)

and (112) are the most widely used. The assumptions that are

made in deriving Eqs (ii) and (1i2) are that the scatterer is

Ia three dimensional object and the distance, r, from the object

approaches infinity to remove the dependence on range. The

scattered fields decay as 1/r in the far field. The presence
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of r2  in the numerator of Eqs (iii) and (112) effectively

eliminates the effect of range on RCS.

For two-dimensional RCS problems, such as in the channel

problem, the RCS is the area (or width) that would normally be

required to scatter "isotropically", in two-dimensions, the

same power radiated toward the receiver. A three dimensional

isotropic radiator radiates into a sphere; a two-dimensional

isotropic radiator radiates into a circle. The fields decay as

r - i / 2  in two-dimensional problems. Though not actually a

cross sectional area, the term RCS is still used in two-

dimensions. Perhaps a more correct term would be a scattering

width (9). The equation for RCS using the incident and

scattered fields in two-dimensions becomes:

l S12

a = lim 2ur (113)
r c IEiI2

The distance from the scatterer is again large enough to

remove the dependence on range. Notice that if a two-

dimensional scatterer could be seen in three dimensions, it

would be infinitely long. If a two-dimensional scatterer of

bounded cross sectional area could be viewed in three

dimensions from a place a large distance r away, the

scatterer would look like an infinite line.

To use Eq (113) on the channel problem, it must be noted

that only the RCS of the cavity can be found. Since the cavity
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is embedded in an infinite PEC plane, it would be impossible to

I reach a distance, r, such that the plane would appear as a

point. Therefore, only the cavity's RCS can be determined.

3 This is not at all bad. Determining the RCS of an infinite PEC

* plane is nearly useless.

The magnetic field scattered from the channel can be found

3using Eq (76) once the magnetic current is known. It appears

asI

HS(x) fH(x' )G(x;x' ) dx' (114)

A

Perhaps more precisely, using Eqs (70) through (73),

Hs(x) - { Ml(x')H(l)k[x-x,)2 + y2 ]i/ 2 ] dx' (115)
-- -2 -- - 0

I -i/2

Eq (113) refers to the limit as r approaches infinity. Since

I Eq (115) is in (x,y) coordinates, it needs to be converted to

(r,O) coordinates. If F is the angle from the.positive y axis

measured positively clockwise and r is the distance from the

I origin, then the Hankel function of the first kind, order zero

in Eq (115) becomes

I ) kE (x-x, )2 + y2)1/ 2 1

I£= Hi)fk[r2 sin 2 9 -2x'rsine + x' 2 + y2cos2G]l/2

I
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or

3 HSI)IC[(x-x,) 2 + y 2 ]1 / 2 1 = HSI)(IC(r2 - 2x'rsine + x, 2 ]i/ 2 1

3 since
x =r sin(e)
y r cos(e)

For large arguments, such as when r goes to infinity in Eq

U(116), the Hankel function of the first kind order zero behaves

3 as

H(3)(z) - ] exp[i (z-v/4)], z--,% ()17

U Using a binomial expansion on the argument of Eq (116) and

I discarding terms on the order of r-1 , a simpler form of Eq

(115) is possible. In antenna theory it is common practice

I when going into the far field to expand the argument and keep

the first term for magnitude purposes and the first two terms

for phase purposes. This is what has been done here. The new

5form of Eq (ii5) is

"1/2
Hs(r,0) = iwe { (x,) exp[i(kr-xksin- w/4)] dx'

I -1/2 (118)

3 The integration in Eq (118) is in terms of x' so several

of the constants may be removed to outside of the integral

I sign. Also, using Eq (81) to approximate iweH(x') and
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breaking the integral from -1/2 to 1/2 into H integrals each

3 over a width ACn, Eq (114) may be further simplified as

3 Xn+AC/2

Hs(r,e) -] exp(i(kr-w/4)] E a exp[-ikx'sin()] dx'
4 wkr n= t xn-AC/2

U (119)

After performing the integration, the magnitude of the

Iscattered field becomes

I 2  1/2 M sin [k (AC/2)s in (e)]
IHsI = I Ia exp[-ikx sin(e)]

wkr nin n k sin(e)

I (120)

Iand k times the RCS becomes

3 sin[k(AC/2)sin(e)] 2
ka 4 E a exp[-ix sin(e)

n=1 n n sin(O) (121)

Notice that when sin(e) = 0, the ratio in Eq (121) is equal

to AC/2. Once the coefficients of Eq (81) have been

3determined (i.e. a's, a's, and r's) the RCS of the cavity may

be generated.

6
I

I
I



I
I

VII. The Computer Program

I A FORTRAN computer program has been written to implement

3 Eqs (100) through (108) and solve for the unknown coefficients

in Eq (81). Using these coefficients, the program then

3 evaluates Eq (121) for the RCS of the cavity. The fields

scattered from the cavity or from both the PEC plane and the

Icavity are easily obtainable using Eqs (59) through (62), but

3have not been plotted. A copy of the program is contained in

Appendix A.

3 The inputs to the nrogram are the channel depth,

normalized by the width, the incident angle of the incoming

Ifield, and the operating frequency in the form of the wave

5 number, k. Here, the wave number is also normalized by the

channel width, w. The output of the program is the RCS of the

5cavity excluding the PEC plane at all reflected angles from

-900 to +900, measured from the +y axis.

Appendix B provides some of the output from the program in

5a plotted form. The input angles for the plane wave are O i

equal to 00, 22.50, 450 and 67.50. The wave numbers used are k

3 equal to 0.1, 1.0, and 10.0 which correspond to long

wavelength, intermediate wavelength, and short wavelength

respectively. The normalized depth of the channel, d, is

3 either 0.25, 1.0, 4.0, or 8.0.

Using these numbers and subdividing the channel into

5 pieces small enough so that the smallest length in the problem

6
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U(depth, wavelength, or width) is resolved by at least 12

3 patches, will yield systems of equations (2H+H by 2H+H) ranging

in size from a minimum of 108 by 108 to a maximum of 440 by

S440. The maximum number of equations and unknowns the program

g can reasonably solve is 450 due to storage constraints. A

Gaussian elimination subroutine utilizing scaled partial

5 pivoting and iterative improvement was used to solve the linear

system of equations. Matrix inversion was tested as a possible

i method of solution and found to be as accurate as the Gaussian

3 elimination subroutine (to eight significant digits) and much

faster for more than one input angle.

3 Using the Gaussian elimination subroutine was slightly

faster than the matrix inversion for one input angle and the

I output of both solutions was comparable. However, a single

matrix inversion can be used to determine the RCS for many

incident angles. With more than one input plane wave (i.e.

3 ei=0°, 22.50, 450, and 67.50), it was more efficient to use the

matrix inversion technique. The output plotted in Appendix B

I was generated using the matrix inversion technique.

The program given In Appendix A can be easily modified to

allow the variables k and d to vary while keeping the incident

and reflected angles constant. Doing so requires a matrix

inversion for each different k and d. This slows the program

down since several inversions are necessary to get a good plot

for the data. The plots obtained by varying k and d for

specific input and output angles are presently more interesting
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than those plots contained in Appendix B. Examples of varying

3 Ik and d are given in the next chapter with a discussion of the

results of the thesis.

I Table III gives a quick list of the plots obtained by

running the program. The plots generated from the program's

data were obtained from the program inputs given in the table.

I
UTable III. Summary of Inputs to the Plotted Data

Normalized Normalized Plane Wave Matrix
Wave Number Channel Depth Incidence Angle Size

i k d e 2M+M

i 0.1 0.25 0, 22.5, 45, 67.5 288
0.1 1.0 108
0.1 4.0 " 252
0.1 8.0 444
1.0 0.25 " 288
1.0 1.0 " " 108
1.0 4.0 " 252

0 8.0 " 444
iO.0 0. 25 2 88

I 10.0 i.0 1 44

i0 0 4.0 .336

0.2-10.0 1.0 0, 45 -

0.2 -10.0 4.0 0, 45

1.0 0.25-8.0 0,.45

8.0 0.25- 8.0 0, 45

Total Number of Plots 60

I
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The theory and equations derived earlier allow for

3 determining the magnetic or electric field at any point x or

the CS at any bistatic angle. Notice that x may be inside the

I cavity, on the cavity, in the upper half space, or at any

desired point in space. The p!ots given, however, are only for

the RCS of the given input values; no plots were generated for

3 the fields inside the cavity, though it is trivial to find them

if desired. Discussion of the most prominent results is given

I in the next chapter.

I
I
I
I
I
I
I
U
I
I
I
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I
3 VIII. Results

The most important contribution of this thesis is the

development of the coupled set of Fredholm integral equations

of the second kind. A set of equations was developed for the

region above the cavity and a set of equations was developed

Ifor use within the cavity. These equations are coupled

together by the aperture of the cavity. The coupled set (Eqs

(64)through (67)) of Fredholm integral equations of the second

kind can be used for any cavity in a PEC plane; they were later

specialized for use with a two-dimensional cavity when a TE

plane wave is the incidert field. In this particular case, the

i equations can easily be solved numerically; or at least

approximated numerically.

5 The resulting set , equations developed for the two-

dimensional problem (Eqs (76) through (80)) reduced an

l integration over an infinite plane to an integration over an

i aperture and around the cavity within the plane. These

specific equations can be used with any shape two-dimensional

3 cavity. The scattered fields can be determined by using Eq

(76) and the currents and charges found using Eqs (77) through

1 (80).

A specific, rectangular, cavity was introduced and the RCS

determined from that shaped cavity for several wavenumbers, R,

and cavity depths, d. A computer program was written and used
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to solve those equations. Most of the data generated by the

3computer program is given in Appendix B. Some of the most

important observations of that data will be presented here.

3Figure 5 shows three plots of RCS data for a wavenumber of

10, an incident angle of 00, and channel depths of 0.25, 1.0,

and 4.0. Notice that the 3hape of the curves remains

5 relatively constant whiP. the peak magnitudes change. With

incident angles of 00, all of the other sets of k and d produce

Iplots similar to Figure 5. This indicates that a 00 plane wave

(with any wavelength) incident to any rectangular cavity

produces a bistatic RCS of roughly the same shape given in

Figure 5; only the magnitudes change with changing wavenumber

and cavity size.

Figure 6 shows the same wavenumber and depths when the

5 incident angle is 450 . At this incident angle, the shape of

the curves do not remain constant. This in ¢zates that depth,

3 wavenumber, and incident angle all contribute to RCS separately

and are not tied specificaily together.

IFigures 7 and 8 give plots of k~i.0 and dzi.0 with

3incident angles of 22.50, 450, and 67.50 and k:1.0 and d:8.0

with incident angles of 22.50, 450, and 67.50, respectively.

3With varying incident angles and a :ixed k and d, the shape of

the curves tend to change slowly. The relative magnitude of

5 l the 'lots also changes slowly. This type of plot occurs for

e.ery channel depth when k:0.i and k:1.C When k:i0.0 (see

Appendix B for the plots) the wavelength is much smaller and a

I
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N small change in input angle changes the ouput RCS by a much

3 larger degree.

Allowing k to vary while hoiding the depth and incident

* and scattering angles constant produces some interesting plots.

Figures 9, 10, and Ii are examples of this type of plot.

Figures 9 and 10 are monostatic at 00 with d=i.0, while Figure

5 it is bistatic at 00 and 450. Notice that Figure It contains

two curves; one for an input angle of 00 (output of 450) and

5 one for an input angle of 450 (output of 00). The concept of

reciprocity (21) is represented quiLe well from the nearly

* exact coincidence of the two plots.

3 The plot in Figure 9 approaches zero at three po.,nts: all

integer multiples of n. When k=nr, the wavelength, X, is

3 2/n. With a depth of i.0 and an incident angle of 00, the

monostatic RCS from this cavity approaches zero because an

I integer number of half wavelengths exactly fill the cavity.

5 The monostatic RCS at 450 (Figure 10) has what seems to be

discontinuities around k=3.4, k=6.3, and k:9.7. Though not

5 shown, these RCS "spikes" occur at incident angles of 150, 300,

and 600 at near the same values of k, and expected for at least

I all angles in between 150 and 600.

This phenomena was investigated further by: 1) expanding

the curve around the k:3.4 value (Figures 12 and 13) and 2)

5 allowing the depth to vary with k:3.3, k:3.4, and k=3.5 (Figure

14). From Figures 12 and 13, it appears as if the "spike" is

5 at least a smooth curve and may belong in the RCS plots (as

17t
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I opposed to being a numerical instability). Figure 14 shows

3 that slight changes in k and d ,round these z;:;-es give large

changes in the monostatic RCS at 450. Again, this indicates

3 that k, d, and ei are all separate variables and should be

treated as such.

Holding k constant and allowing d to vary produces

3 oscilla-.ing riots from a maximum to a minimum and back again.

This is because as the depth of the channel is increased, more

wavelengths (when the wavelength is held constant) can fit into

the channel. An example of this type of plot is given in

Figure 15. Figures similar to Figures 5 through 15 are givcn

3 in Appendix B.

I
I
I
I
I
I
I
I
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k=10.0 d=0.25, 1.0, & 4.0 Inc Angle=00

200- 4.o

* 140

I ~ 120-

100

1 80 11

60-

1 40-

* 20-

-0 -70 -60 -.30 -10 10 0 60 7 90

Distatic Scattering Angle (degrees)

Figure 5. Bistatic RCS with R~i0O, d=0.25, i.0, and 4.0 withI an Incident Angle of 00.
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I k=10.0 d=0.25, 1.0, & 4.0 Inc Angle=45"

70

40-

3 20

I10
0-40 -70 -60 -30 -10 10 3D E30 70 9

Bistatic Scattering Angle (degrees)

I Figure 6. Bistatic RCS with R=10.0, d=0.25, 1.0, and 4.0 with
an Incident Angle of 450.
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Ik= 1.0 = .
14.5- e 22.50, 4i50, & 67.50

14

13.5

I 13-

.1 12.5-

*12- S

1 11.5-

11

U _ __ __ __ __ __ __ __ __ ___0__ __

-90 -70 -60 -%0 -10 10 30 50 70 90

U Bistatic Scattering Angle (degrees)

3 Figire 7. Bistatic RCS with kzi.O and d~i.O. The Incident
Angles are 22..50, 450, and 67.50.
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k= 1.0 d=8.01i 22.50, 450, & 67.50

I 7-

5-

4-

3-.00 -70 -60 --30 -10 110 30 6 70 90

Bistatic Scattering Angle (degrees)

Figure 8. Bistatic RCS with k:1.0 and d=8.0. The IncidentI Angles are 2.P.5 0 , 4,50. and 67.50.
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Monostatic Scatter at 00 with d=1.0
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IFigure 9. Monostatic RCS at 00 with d:1.0 and a varying

wavenumber, k.I
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Monostatic Scatter at 45c with d=1.0
3 40

* 60-
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I 30

I

I Figure 10. Monostatic RCS at 450 with d:t.0 and a varying

wavenumber, k.
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d=1.0 Monostatic Scatter at 450

10-

7 9

I I
6

4

1 3
2

o I I I I I 1

2.7 2.9 3.1 .3 -.5 3.7 .9Ik k, (.,,... I,,c-w-,, h)

t

i Figure IZ. Honostatic RCS at 450 with d=1.0 and a varying
wavenumber, k; Small increments of k were taken around the

spike in Figure 10.
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1 d= 1.5 Monostatic Scatter at 450
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k (wnce inammewb)

I Figure 13. Monostatic RCS at 450 with d=1.5 and a varying
wavenumber, k; Small increments of k were taken around the
spike in Figure 10.
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U Monostatic Scatter at 4503Varying d and %mopig k aobnt
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I Figure 14. Monostatic RC~S at 450 with K=3.3, 3.4, and 3.5 and
a varying depth, d; Small increments of d were taken for the
three IC values around the spikle In Figure 10.

* 82

.I.....



I
I
I
I

Monostatic Scatter at O°With k=1.0
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C!xw Deth dI

£ Figure 15. Monostatic RCS at 00 with a fixed k=i.0 and a
varying depth, d.
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IX. Conclusions and Recommendations

I The most important contribution of the thesis is the

development of the coupled set of Fredholm integral equations

of the second kind for the two-dimensional cavity. The

3 integral equations derived for finding both the electric and

magnetic fields and the surface currents and charges are exact.

I This thesis shows that using the half space Green's function to

* derive the equations above the plane in Figure 1, the free

space Green's function to derive the equations used inside the

cavity, and then coupling these equations through the aperture

is an accurate way to determine the fields scattered from the

I channel. It is concluded that the RCSs plotted in Figures 5

5 through 15 and Appendix B are reasonably accurate. They are

not exact in that some approximations were necessary to solve

* the equations numerically.

The method used to calculate the fields, currents, and

I charges is an approximation. As the discretization parameter,

a AC, approaches zero, the approximation should better represent

the exact solution. However, with more segments, the number of

3 unknowns and equations also increases and therefore so does the

computer time required to solve the system of equations. As

3 the number of equations increases, so too does round-off error

in the computer. The accuracy that can be obtained using

moment methods is therefore limited by round-off error.

In this thesis, the smallest length in the problem

iavelength, channel depth, or width) was broken uo into at

1 4
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least 12 segments. This seems to give reasonable accuracy at a

5 reasonable cost in computer time. Test cases were applied for

several different segments per smallest length. (Actually, 4,

15, 6, 8, 10, 12, 14, 16, 20, 24, and 32 segments per smallest

length were used.) All of the cases above 8 segments per

Ismallest length gave RCS plots of approximately the same

3 magnitude and shape for all bistatic angles. The time required

when using 12 segments per smallest length was only a 4ew

1minutes longer than when using 10 segments. Though, even at 32

segments per smallest length, the RCS plots seemed to be still

Iconverging on an "exact" plot (remember, numerical solutions

3 are limited by round-off error.) The theory and methods used

here allow for more accuracy, limited by round-off error, if

desired. The user must be willing to give up computer time in

order to achieve this accuracy.

IAppendix C gives a description of a target designed to

1obtain RCS measurements of the rectangular cavity. Using this

target and the method described in Appendix C, laboratory

measurements can be obtained to check the predicted RCS values

given in this thesis.

l There are several possibilities for further analysis for

this problem. These include:

1. Making the measurements on the target described in Appendix
C to determine the accuracy of the method described therein.

I2. A selection of different shaped cavities than the
rectangular one used here. This would require reworking the

I approximate solutions and new computer programs.
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I 3. A TM (transverse magnetic) incident field instead of the TE
case used here. Mew equations may have to be derived using
Dirichlet boundary conditions and an equation similar to Eq
(58) could be used in place of Eq (60) and an equation similar
to Eq (61) used instead of Eq (59) to get equations similar to3 Eqs (64) and (65) r'espectively.

4. A cavity filled with a dielectric. This changes the
problem drastically. The free space green's function inside of
the cavity will have to be evaluated to determine the affects
of filling the cavity with a dielectric.

5. Change the channel to be an open channel, meaning that the
depth is infinite. New equations would need to be derived for
the inside of tha cavity in this case. Perhaps a new Green's
function can be explored to eliminate integrating along the now
infinitely deep channel sides.

6. Let the cavity be three dimensional. That is, let the
cavity have a finite length as well as the finite width, w, and
depth, d. This gets closer to an open ended flanged waveguide.

3 Another contribution from this thesis is that it may now

3 be possible to easily determine the RCS from infinite

cylinders, or other two-dimensional objects, containing abrupt

3 "cavity-like" variations in an otherwise smooth surface. If

such an object had a trench along the side, such as the

3 rectangular cavity explored in this thesis, or some other

cavity, it should be possible to find the RCS of such a

cylinder by adding the fields scattered from a perfect cylinder

£ to those scattered from the perturbing cavity and using the

result as the scattered field. Such an approximation, based on

3 the cavity solution obtained herein, would better represent the

true solution when the curvature near the cavity is small.

8
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I Figure 16 shows the proposed method to approximate the

scattered RCS from a cylinder with a small rectangular cavity.

It should be investigated to ascertain the feasibility of the

3 method.

!
I

£, H

I
i
I

EES H-

I

5(a) Fields Scattered from a Whole Cylinder Without the Cavity
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(b Fidte Fild ct teesroCh Cvt

I

/I\
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I

(c) Add the Fields from (a) and (b) to Calculate the RCS

I Figiore 16. Methud for inding the RCS ct an Infinite Cytinder

With a Rectangular Cavity by Adding the Fields Scattered FromSthe Perfect Cylinder (a) to Those Scattered From the Cavity (b)
to Get the T'otal Field (c).
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NThe above recommendations for further study are important

3 to fully evaluate the scattered EM fields frog objects

containing cavities. The information contained in this thesis

3 is a continuation toward that goal.

In the preceding pages, a set of Fredholm integral

equations of the second kind using Neumann boundary conditions

3 (the half space Green's function, G(x;x')) were derived for the

half space above the cavity. These equations were then coupled

3to a corresponding set of integral equations for inside the

cavity and the coupled set was used to find surface currents

and charges that could be used to find the scattered fields or

the RCS of the cavity. A specific, rectangular, cavity was

introduced as a test case and the RCS calculated using a

Fortran computer program specifically written for this task.

The output of that program was addressed and presented.

IFinally, specific areas for future analysis were given. Though

the analysis, study, and experimentation continues, this thesis

has completed.

I
I
I
I
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3 Appendix A: Computer Program

i The following listing is the FORTRAN computer program

3 written to solve the test problem within the thesis.

I
I
i
i

I
I

i
I
I
a

I
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I C This is the prog-am for finding the RCS of a rectangular
C channel of normalized depth (dw), unity width, and for a
C wave number (wk) read as input. This version runs on the
C AFIT CSC computer system with IMSL commands. The program
C must be linked with the IMSL library. To do this on the
C CSC

C THE APPROPRIATE LINK STATEMENT IS:
C LINK FILEHAME.OBJ, IMSL$DIR: IMSL/LIB
C
C This version uses the matrix inverse routine.
C It reads the input file "DINP.DAT" for the number of
c different k's (wk) and d's (dw) to be used. This number is
c called nin. The program then runs nin times and prints out
c the RCS data in 10 significant digits. The number of
c segments that the smallest measurement is to be broken into
c is read from an input file as well as the incoming
c planewave angles.
c This version checks for 1/delc as an integer. As long
c as npp is divisible by 4, d is a multiple of .25 and
c K:10, or less than 2pi, this will work.
c
C Some of the main variables are:
c J:imaginary operator (squareroot of -i)
c dw:channel depth normalized to the width
c wX:wave number normalized to the width
c delc:wldth of each line segment after discretization
c RCS():Radar Cross Section data that is output
C XM(i(or 2), N)=The midpoint of the Nth linesegment, a I
c indicates the x point and a 2 indicates the y point
c CLNM(m,n):the matrix holding the data for the linear
c operations on the currents and charges. (see the Thesis c
r noted above Eq. (109) for details)
C cout():the current and charge coefficients
c go the incident fields data (see Eq. 190 in the thesis)
c
c

IMPLICIT DOUBLE PRECISION A, B, D, E,F,H,0,Q, R, T,U, V,W, X,Y, Z

IMPLICIT COMPLEX*t6 C,J,G,P,S
DOUBLE PRECISION CONST
CHARACTERMiO FLNAME
DIMENSION G(i: 500), CLNM(1: 500, t: 500), COUT(i: 500
DIMENSION CWKS(i25250), IWKS(500),RCS(i:1O,-90:90)
COMMON J, XM(1: 2, i: 500), WK, DELC

I
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C

C Set some of the preliminary constants

J:(O.DO, 1.DO)
OHE=I.DO
CZERO= (0. DO, 0. DO)
PI=3.14159265359D0

c

c Open files for input (2 and 4) and output (5)
c unit 5 holds the real and imaginary parts of the current
c across the aperture for the first incident plane wave
c

OPEN (UNIT=2,FILE='DINP.DAT',STATUS='UNKNOWN')
OPEN (UNIT:4,FILE:'DIN2.DAT',STATUS:'UNKNOWN')
OPEq (UNIT=5,FILE='CRNT.DAT',STATUS='UNKNOWN')

c
c NIN is the number of times to read the input file for sets of
c k and d (which are wk and dw) and output files to be unit #3
c NPP is the number of points per smallest measurement
c

READ (2,899) NIN
READ (2,899) NPP

c

c RFRST is the first incidence angle, RLST is the last, and
c RSTEP is the step size to get from RFRST to RLST
c

READ (4,*) RFRST. RLST, RSTEP
898 FORMAT(FIO.3)
899 FORMAT(I4)
C
C IMAX is the integer to be used latter to store the data
c generated as RCS data
c

IMAX:IDINT( (RLST-RFRST)/RSTEP+i .5)
DO 650 ICNT:I,NIN,i

READ (2,850) WK
READ (2,851) DW
READ (2,855) FLNAME
OPEN (UNIT:3, FILE:FLNAME, STATUS:'UNKNOWN')
WK=DBLE(WK)
DW=DBLE(DW)

C
C WAVE is the wavelength
c RMIN is the smallest of WAVE, DW (depth), and I (width)

WAVE:2.DO PI/WI
RMIN:DMINi(WAVE, DW, ONE)

C
C Find the discretization size, DELC
c and then make sure that i/delc is an integer
c

DELC:RMIN/DBLE(FLOAT(NPP))
DELC:I.DO/DBLE(FLOAT(IDINT(i.DO/DELC+0.99975)))

c

92



C NMAX will be the matrix size (nmax by nmax). It is the total
c number of line segments needed to go around the cavity twice
c and across the aperture one extra time.
c The information is written out just to keep track how the
c program is progressing.

c

NMAX:IDINT((4.DO*DW+5.DO)/DELC +0.5D0)
WRITE (*,854) WK,DW,DELC,NMAX,FLNAME
WRITE (3,854) WK,DW,DELC,NMAX,FLNAME

854 FORMAT( iX, 3E14.6, 2X, 13, Ai0)
850 FORMAT(F9.6)
851 FORMAT(F4.i)
853 FORMAT(13)
855 FORMAT(Ai0)
C
C FILL THE POSITION MATRIX XM()
C
C THE "+0.5" INSURES THAT 1.9999 DOES NOT GET TRUNCATED
C
c The MONE through MEIGHT are the last line segments (delc's)
c for each major segment, across the aperture for M, across the
c aperture of K, down S- for K,
c

MONE: IDINT (i. DO/DELC+0.5D0)
MTWO: 2*MONE
MTHR:MTWO+ IDINT(DW/DELC+0.5DO)
MFOUR:IDINT((3.DO+DW)/DELC+0.5DO)
MFIVE:MFOUR+IDINT(DW/DELC+0.5D0)
MS IX :MFIVE+MONE
MSEVN:MSIX+ IDINT (DW/DELC+0.5DO)
ME I GHT :MSEVN+MONE5 C

C The first section is across the aperture (for Hag Crnt)
C

DO 10, I:iMONE, i
XM(I,I)=-0.SDO+(DBLE(FLOAT(1))-0.5D0)*DELC
XM(2, I):O.ODO

10 CONTINUE
C
C The second section is across the aperture for the k vector
C

DO 12, I:MONE+i,MTWO,i
XM(i,I):0.5DO-DELC*(DBLE(FLOAT(I-MONE))-0.5DO)
XM(2, I):O.ODO

12 CONTINUE
C
C Section 3 is for S-
C

DO 14, IzMTWO+1,MTHR,tI
XM(2,I):-DELC*(DBLE(FLOAT(I-HTWO))-0.5D0)

XM(i, I):-0.5D0
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U14 CONTINUE
C

C Section 4 is for sd
C

DO 16, I=MTHR+1,MFOUR, 1
XM(i,I)=-O.5DO4DELC*(DBLE(FLOAT(I-MTHR))-O.5DO)
XM(2, I )-DW116 CONTINUE

I C Section 5 is for a+
C

DO 18, I=MFOUR+1,MFIVE, iI XM(2, I)=-DW+DELC*(DBLE(FLOAT(I-HFOUR))-O.5D'))
XH(1, I)zO.5D0

18 CONTINUE
C
C Section 6 is f or A for the sigma equations
C

DO 22, I:MFIVE+i,MSIX, iI XM(i,l):O.5D0-DELC*(D)BLE(FLOAT(I-MFIVEfl-O.5D0)
XM(2, I):O.QDO

22 CONTINUEI C
C Section 7 is for a-

DO 24, I=HSIX+1,,MSEVN~ t
XM(2,I)=-DELC*(DBLE(FLOAT(I-MSIX))-O.5D0)
XM(t, 1=-0. 5D0

24 CONTINUEI C
C Section 8 is for ad
C5 DO 26, I:MSEVH+t,MEIGHT, 1

XM(i,I)=-O.5DO.IDELCN(DBLE(FLOAT(I-MSEVN))-O.5DO)
XM(2, I)=DW

26 CONTINUEI C
C Section 9 is for s+

V DO 28, I:MEIGHT+i,NHAX, i
XM(2,I):-DW+DELC*(DBLE(FLOAT(I-MEIGHT))-O.5D0)
XM(i, I)=O.5D0

28 CONTINUE
C
C The position matrix is now filled5 C
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I C Next we must fill the CLNM() matrix.
C5C Set constants
C

EULER= .57721566490 i5D0
CONST=2. DO/WK/PI
ETA=WKE DELC/4. DO
SP=-CONSTi( DL0G(ETA)-i.DO )*ETA
SP=SP+( J/WK - CONSTNI2ULER )*sETA
ETA3=ETAM ETAi ETAI SP=SP+ETA3*CDNST*( DLOG(ETA) - i.DO/3.DO )/3.DO
SP=SP-ETA3i( CONST*(i.DO-EULER) + J/WK )/3.DO3 C3 -WX*WK

C The H is down the side of the matrix (row) and refers to the
C "OBSERVATION" point. The "N" is across the top of the matrix
C (column) and is the "SOURCE" point.

c In appropriate cases, the program must check for self-

C patches, i.e. those cases when the midpoint of the
cobservation point is equal to the midpoint of the source

c point.
C
C THE FIRST MAJOR SECTION HAS M ON A(ALPHA)
C
C EQ A (in the derivation notes)

DO 90, M=i,MONE, I
C
C N on A(alpha)I C

D~O 40, N =i, MONE, i
IF (N .EQ. M) THENI CLKM(M, N)z (0. 5D0, 0. DO

GOTO 40
ENDIF
CLNM(M, N)=CZEROI40 CONTINUE

C
C N ON A(BETA)

I C DO 50, NH0NOE+i,MO, i
IF (DAB3(XM(t,M)-XM(l,N)) .LT. DELC/3.DO) THEN

CLNM(M, N)=C3*SP
GOTO 50

ENDIF
CLNM(M, N) :C3*PHIO (XM( I, ), XM(2, M), XM(i, N)1 XM(2, N) )*DELCI50 CONTINUE

C
C N ON S-(BETA)

DO 60, N:MTWO+I,MTHR,i
CLNM(M, N):CZERO 
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60 CONTINUE
C
C N ON SD(BETA) THROUGH S+(BETA)I C

DO 65, N=MTHR+i,MFOUR, 1
CLNM(M, N)=-C3*PHIO (XM(i, M), XM(2, M), XM(i, N), XM(2, H) )*DELCI65 CONTINUE

DO 66, N=HFOUR+i,MFIVE, i
CLNM(M, N)=CZERO366 CONTINUE

C
C N ON A(GAM{A)

C

DO 70, N=MFIVE+i1MSIX, iI IF (DABS(XM(i,M)-XM(1,N)) .LT. DELC/3.DO) THEN
CLNMM(M, N):=CZERO
GOTO 70

ENDIFI CLNM(M, N)= PHI iX(XM(i, M), XM(2, M), XM(i, N), XM(2, N) )*DELC
70 CONTINUE
CI C N ON S-(GAQ4A) THROUGH S+(GAMl4A)
C

DO 80, NzMSIX+i,MSEVN, I
CLNM(M, N)=PHliX(XM(i, M), XM(2, H), XM(1, N), XM(2, N) )*DELC

80 CONTINUE
DO 8 5, N =MS EVN+ i,NMAX, I

CLNM(M, H)= PHI iX(XM(i, M), XM(2, M), XM(i, N), XM(2, N) )*DELCI85 CONTINUE
90 CONTINUE
C
C Thus ends the section for M on A(alpha)--the next major c
section is for M on A(beta)

C Eqbdivided by 2 to get the 1/2 along the diagonal
C

DO 130, M=MONE+i,MTWO, i
CIC N on A(alpha)
C

DO 100 N:I,MONE, I
IF (DABS(XM(I,M)-XM(i,N)) .LT. DELC/3.DO) THEN

CLMM(M, N)=SP
GOTO 130

ENDIFI ~~CLNM(M, N)=-PHIO (XM(1, M), XM(2, H), XM( 1,N), XM(2, N) )*DELC
100 CONTINUE
C
C N on A(beta)IC

DO i0t, N=MONE+i,MTWO, £
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IF (H .EQ. M) THEN
CLNM(M, N): (0.5D0, 0. DO )
GOTO 110I ENDIF

CLNM(M, N)=CZERO
110 CONTINUE3 C
C N on all of the rest of the segments
C

DO 12 0, N =MTWO +i, NMAX, iI CLNM(M, N)=CZERO
120 CONTINUE
130 CONTINUE

CSC This next major section takes care of the obsrvtn point, M,
C on s-(beta) through s+ (beta) for the source point, N, on3c A(alpha) and bea
C

C The next major section is for M on s-(beta) and N on all
c surfaces except for A(alpha) and A(beta)

C
C Nq onc apaI C

DO 140, N=1,MONE, i
C LNM(M, N):PHI10( XM (i, M) XM(2, M) XM(1, N) XM(2, N) )DE LC

140 CONTINUE

C
C N on A(beta)

I DO 150, N=MONE+i,MTWO, i
CLNM(M,N)=PHI1Y(XM(,M),XM(2,M),XM(1,N),XM(2,H))*DELC

150 CONTINUE
C
C N on s-(beta)
C

DO 17 0, N = WO +it, MTHR, I
IF (N .EQ. M) THEN

CLNM(M, N): (0. 5D0, 0.DO)
GOTO 17O

ENDIF
CLNM(M,N)=CZERO

170 CONTINUE
C
C N on sd(beta)
C
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I DO 180, N=MTHR+i,MFOUR, I
CLNM(M, N)=-PHIiYo(M(I,M), XM(2, M), XM(i, N), XM(2, N) )*DELC

180 CONTINUE
C
C N on s+ (beta)
C3 DO 190, N=MFOUR+i,MFIVE, 1

CLNM(M, N)=PHIiX(XM(1, H), XM(2,H), XM(1, N), XM(2, N) )wDELC
190 CONTINUE
CU C N on A(gamma) through s+(gamma)
C

DO 200, N=MFIVE+,NMlAX, iI CLNM(M, N)=CZERO
200 CONTINUE
210 CONTINUE

I C
C The next major section is for M on sd(beta)
CIC Eq d
C

DO 260, M=MTHR+i,MFOUR, I

C N on A(alpha)
C

DO 141, N=1,MONE, iI ~~CLNM(M, N)=-PHIO (XM(1, H), XM(2, H), XM(1, N), XM(2, N) )*DELC
141 CONTINUE
CI C N on A(BETA)
C

DO 151, N=MHE+1,MTWO,1

CLNM(M, N)=-PHI IY(XM(1, H), XH(2,H), XM(1, N), XM(2,N) )*DELC

C
C N on s-(beta)
C

DO 220, N:MTWO+I,MTHR, i3 ~CLNM(M, N)=PHIIX(XH(1,M), XM(2,M), XM(i, N), XM(2,N) )*DELC
220 CONTINUE

C N on sd(beta)
C

DO 230, N=MTHR+i,MFOUR, i
IF (H .EQ. M) THEN

CLNH(M, N) (-0. 5D0, 0. DO)
GOTO 230

ENDIF5 CLNM(MH, )=CZERO
230 CONTINUE
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IC
I~ N on s+ (beta)

I DO 240, N=MFOUR+i,HFIVE, i
CLNM (N, )=-PHI IX(XM(1, N), XM(2, M), XM( IN), XM(2,N) )*DELC

240 CONTINUE
C
C N on A(gamzna) through s+ (gamma)
C

DO 250, N=MFIVE+iMAX, iU CLNM(MH ):CZERO
250 CONTINUE
260 CONTINUEI C
C The next major section is for M on s+(beta)

5C Eq e

DO 310, H:HFOUR+i,?4FIVE, i
CU C N on A(alpha)
C

DO 142, N~i,MONE,iI ~CLNM(M, N)=-PHIO(XM(i,M), XM(2,M), XM(i, N), XM(2, N) )*DELC
142 CONTINUE

C N on A(BETA)

DO 152, N:MONE+i,MTWO, i
CLNM(M, N)=PHIIY(XM(i, M), XM(2, M), XM(i, N), XM(2, N) )*DELCI152 CONTINUE

C
C N on s-(beta)

I C DO 270, N=MTWO+1,MTHR, i
CL.NM(M, N)=PHI IX(XM(1, H), XM(2, H), XM(1, N), XM(2,N) )*DELC

270 CONTINUEI C
C N1 on sd(beta)

DO 280, N=MTHR+i,MFOUR, i

S280 CNIU
C

DO 290, N:MFOUR+i,MFIVE, I
CLNM(M, N)=CZERO
IF (N .EQ. H) CLHM(M,)(-0.5D0,0.DO)5290 CONTINUE
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IC
U C N on A(gamma) through s+(gamma)

I DO 300, N=MFIVE+i,!U4AX, i
CLNM(M, N)=CZERO

300 CONTINUE
3t0 CONTINUE

C All of the elements for the observation point on the "beta"

3C segments are now filled.

C The next major section is to have M on all the "gamma"3c segments and the source point, N, on the beta segments.

DO 330, M=4FIVE+i1,NWAX. I
DO 320 NzMONE+i,MFIVE, iI CLNM(H, N)=CZERO

320 CONTINUE
330 CONTINUE

C Now we again systematically fill M on A(gamma)
CIC Eq f
C

DO 390, M=MFIVE+i,MSIX, i
C
C N on A(ALPHA)
C

DO 340, N=1,HONE,iI IF(DABS(XH(i,M)-XM(i,N)) .LT. DELC/3.DO) THEN
CLNM(M, N)=CZERO
GOTO 340I ENDIF

CLNM(M, N):PHI iX(XM( I, ), XM(2, M), XM(I, N), XM(2, N) )*DELC
340 CONTINUE
CI C N on s-(beta) and s+ (beta)
C

DO 342, N=MTWO+.,MTHR, II ~~CLNM(M, N) :C3*PHIO (XM(I, H), XM(2, H), XM(I, N), XM(2,N) )*DELC
342 CONTINUE

DO 344, N=HFOUR+i,MFIVE, I
CLNM(M, N)zC3*PHIO(XM(i,M), XM(2 1 H), XM(i, N), XM(2, N) )*DELC

344 CONTINUE

C N on A(GAMHA)I C
DO 350, N=MFIVE+i,MSIX, I

CLNM(M, N):CZEROI IF (N -EQ. M) CLNM(M,N)=(-0.5D0,0.D0)
350 CONTINUE
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IC
C N on -gma

I DO 360, N=MSIX+1,MSEVN, I
CLNM(H. N)=-PHI IY(XM(i, H), XM(2, M), XM(I, N), XM(2, N) )*DELC

360 CONTINUEI C
C N on sd(gamma)
C

DO 370, N:MSEVN+i,MEIGHT, i

CLNM(M, N)=:PHI IY(XM(1, M), XM(2, M), XM(i, N), XM(2,N) )*DELC
370 CONTINUE
CIC N on se (gamma)
C

DO 380, N=MEIGHT+I,NMAX,iI ~~CLNM(M, N)=-PHIIY(XM( i, ), XM(2, H), XM(I, N), XM(2, N) )*DELC
380 CONTINUE
390 CONTINUE
CUC The next section is for M on s-(gamma)
C
C Eq g

C
DO 450, M=MSIX+I,MSEVN, i

C

DO 400, N=i,MONE,i
CLNM(M, N)=PHIiY(XM(1, H), XM(2, H), XM(i, N), XM(2, N) )*DELCI400 CONTINUE

C
C N on A(BETA)

DO 402, N=MONE+1, MTWO, i
CLNM(M, N)=C3i*PHIO(XM(i,M), XM(2,M), XM(I, N), XM(2,N) )*DELC

402 CONTINUE

C
C N on sd(beta)
CI DO 404, H:MTHR+i,I4FOUR, I

CLNM(M, N)=-C3*PHIO(XM(I,M), XM(2,M), XM(I, N), XM(2, N) )*DELC
404 CONTINUE
C
C N on A(GAHA)
C

DO 410, N=MFIVE~i,MSIX, £I CLNM(M,N):PHIIX(XM(I,M),XM(2,M),.XM(1,N),XM(2,N))*DELC

410 CONTINUE
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IC
C N on -gma

I DO 420, N:MSIX+i,MSEVN,i
CLNM(M, N):CZERO
IF (N .EQ. M) CLNM(H,N)=(O0.5D0,O.DO)

420 CONTINUE

C N on dgma

3 DO 430, N=MSEVN+i,MEIGHT, I
CLNM(M, N)=PHliX(X( i, H), XM(2, H), XM(I, N), XM(2, N) )MDELC

1430 CONTINUE
C
C N on s+(gamma)

DO 440, N=MEIGHT, NMAX, I
CLNM(MH ):PHIIX(XM(I, H), XM(2, H),XH(I, N), XM(2, N) )*DELC

440 CONTINUEI450 CONTINUE
C
C The next section is for M on sd(gamma)S C
C Eq h
C

U N DO 500, M=MSEVNI,MEIGHT, I

CNon A(ALPHA)

I DO 460, H=i,MOHE,i
IF (DABS(XM(i,M)-XH(i,M)) .LT. DELC/3.ODO) THEN

CLNM(M, N):CZEROI GOTO 460
ENDIF

CLNM(M,N):-PHIIX(XM(i,M),XM(2,M),XH(i,H),XM(2,N))uDELC

1460 CONTINUE
C
C H on s-(beta)S C

DO 462, N=MTWO+i,MTHR, i
CLNM(M, N) :C3*PHIO (XM( I, ), XM(2, H), XH(i, N), XM(2, N) )lDELC

462 CONTINUE

C
C N on s+(beta)

I O 64 NMFURiFIECLNM(MN)=-C3*PHIO(,XM(I,M),XH(2,M),XM(I,N),XH(2,N))*DELC3464 CONTINUE
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IC
C H on A(gamma) and -gma

I DO 470, N=MFIVE+ 1, MSEVN, i
CLNM(M, N)=PHIIY(XM(i, H), XM(2, H), XM(1, N), XM(2,N) )*DELC

470 CONTINUE
C
C N on sd(gamma)
C

DO 480. N:MSEVN+i,MEIGHT, I

CLNM(M, N)=CZERO
IF (H .EQ. M) CLNM(M,N)=(-O.5D0,0.DO)

480 CONTINUEU C
C N on s+(gamma)
C

DO 490, N:MEIGHT+ i, NMAX, I
CLNM(M, N)=PHI1Y(XM(t, M), XM(2, H), XM(I, N), XM(2, N) )*DELC

490 CONTINUE
500 CONTINUEI C
C The last major section!! Is for M on s+(gamma)
CIC Eq i
C

DO 550, M=4EIGHT+i,NMAX, i
C
C N on A(ALPHA)
C

DO 510, N~i,MONE, II ~CLNM(M, N)=PHIIY(XM(t, H), XH(2, H), XM(I, N), XM(2, N) )*DELC
510 CONTINUE
C5C N on A(BETA)
C

DO 512, H:MONE+i,MTWO,i
CLNM(M, N)=-C3*PHI0(XM(i,M), XM(2,M), XM(i, N), XM(2, N) )*DELCI512 CONTINUE

C
C N on sd(beta)I C

DO 514, MN:MTHR+i,HFOUR, i
CLNM(M. N) :C3*PHIO (XM( 1, ), XM(2, H), XM(I, N), XM(2,N) )*DELC

514 CONTINUE

C
C N on A(gamma) and s-(gamma)

I DO 520, N:MFIVE+1,MSEVN, 1
CLNM(M, N)=-PHIIX(XM(1, H), XM(2, H), XM(i, N), XM(2, N) )*DELC3520 CONTINUE
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IC
C N on sd(gamma)

I DO 530, N:MSEVN+i,MEIGHT, I
CLNM(M, N) :-PHI iX(XM(i, M), XM(2, M), XM(i, N), XM(2, N) )*DELC

530 CONTINUE
C
C K on s+(gamma)
C

DO 540, N:MEIGHT+i, NMAX, I
CLNM(M, N)=CZERO
IF (N .EQ. M) CLNM(M,N)=(-0.5D0,0.D0)

540 CONTINUE
550 CONTINUE

cI The CLNM() matrix is now filled.

C

3 WRITE (*,) 'LNM MATRIX FILLED...GOING TO INVERT'

C The major matrices are now all filled. The next step is to
C invert the CLNM() matrix.
C
C Using AFIT's IMSL library, one statement will invert CLNM()
C

CALL DL2NCG(NMAX,CLNM,500,CLNH,500,CWKS, IWKS)
WRITE (,, ) MATRIX INVERTED...'

C
C We next fill the "go" matrix of known values
C

DO 601, L4:i, IMAX, i

c AL2 is the input angle in degrees

AL2:DBLE(FLOAT(L4))*RSTEP-RSTEP+RFRST
WRITE(*, 888) AL2

888 FORMAT(5X,F6.2)
c3 c Convert the input angle to radians
c

THTI =AL2* PI/180. DO

c Fill the Go matrix
c

DO 560, I=i,MONE,i
G (I) :CZERO

560 CONTINUE
DO 570, I:MONE+I,MTWO, I

G(I):CKPO(I, THTI)/2.DO
570 CONTINUE
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DO 580, I=MTWO+1,NMAX, i
G(I )=CZEROI580 CONTINUE

C
C Multiply the inverted matrix by the input matrix, Go
C using the IMSL library function.3 C

CALL DMCRCR(NMAX,MKAX, CLTHM,500, NMAX,1, G,500,MKAX,1, COUT, 500)

Ic If it's the first input angle, then write out the currents
C

IF (L4 .EQ. 1) THENI DO 700, IMi=1,MOHE, I
WRITE(*, 860) REAL(COUT(IMI)),DIMAG(COUT(IMi))
WRITE(5,860) REAL(COUT(IMI)),DIMAG(COUT(IMi))

860 FORMAT (IX,2E19.t2)
700 CONTINUE

ENDIF
WRITE(5,* 'I ~WRITE (~)

c Calculate the RCS using Eq. 121 in the ThesisIc for each output angle from -90 to 90
c

DO 600, L=:90, 90, 1
THTR=DBLE(FLOAT(L))*PI/i80 DO
CSUM=0. DO

DO 610, M=i,MONE,1
CSUM=CSUTM+COUT(M)*CDEXP(-J*W'K*XM(i,M)*DSIN(THTR))I610 CONTINUE

IF (L HNE. 0) THEN
CSUM=CSUM*DSIN(WK*DELC*0.5D0MDSIH(THTR))/(WK*DSIN(THTR))U ENDIF

IF (L .EQ. 0) THEN
CSUM=CSUMM DELC/2. DO

ENDIFI RCS(LJ,L)=4.DO*CDABS(CSUM)*CDABS(CSUM)
600 CONTINUE
601 CONTINUEI c
c Output the RCS data
c

DO 603, L=-90, 90, 1
WRITE(3, 868) L, RCS(i, L), RCS(2, L), RCS(3, L), RCS(4, L)

868 FORMAT (14,4LEi9.12)5603 CONTINUE
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IC
c Close the output file and go back for the next k and d

650 CONTINUE
CLOSE(UNIT:2)I " CLOSE (UNIT: 5)
CLOSE (UNIT=4)
END

C

C
c CKPO is the function that gives the physical optics current3 c across the aperture. This is actually the H field incident
c to the aperture.
c

COMPLEX*16 FUNCTION CKPO(MI THTI)
IMPLICIT DOUBLE PRECISION A,B,D,E,F,H,O,Q,R,T,U,V,W,X,Y,Z
IMPLICIT COMPLEX*16 C,J,G,P

COMMON J,XM(i:2, 1:500),WK,DELC
CKPO=2.DO*CDEXP(-J*WK*(XH(i,M)*DSIN(THTI)))
RETURN
END

CI, C
c PHIO is the function that gives the Hankle function of the
c first kind of order 0 for X times r. It is multiplied by
c j/4 to give the Green's function in two dimensions.
c

COMPLEX*16 FUNCTION PHIO(Xi,YI,X2,Y2)
IMPLICIT DOUBLE PRECISION A,B,D,E,F,H,O,QR,T,U,V,W,X,Y,Z
IMPLICIT COMPLEX*i6 C,J,G,P
COMMON J, XM(1: 2, 1: 500), WK, DELC
WKR:WK*DSQRT((Xi-X2)* (XI-X2)+ (YI-Y2)* (YI-Y2))
PHI0=(DBSJ0(WKR)+J*DBSY0(WKR))*Jw0.25DO
RETURN
END

C
C
c PHIIX gives the x component of the gradient of PHIO3 COMPLEX i6 FUNCTION PHIiX(XI,YI,X2,Y2)

IMPLICIT DOUBLE PRECISION AB,D,E,FH,O,Q,R,T,U,V,W,X,Y,Z
IMPLICIT COMPLEXui6 C,J,G,P
COMMON J,XM(i:2, i:500),WK,DELC
R=DSQRT((Xi-X2)* (XI-X2)+ (Yi-Y2)(Yi-Y2))
WKR :WK*R

PHIIX=J*0.25DO*WK* (Xi-X2)* (DBSJi (WKR)+J*DBSYI (WKR))/R
RETURN
END

C
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IC
I c PHIiY gives the y component of the gradient of PHIO

3 COMPLEX*16 FUNCTION PHIIY(Xi1 Yi.X2,Y2)
IMPLICIT DOUBLE PRECISION A, B, D.E,F,H,QQ, R, TIUV,W,X, YZ
IMPLICIT COMPLEX*I6 CIJ,G.P3COMMON J, XM(i: 2, 1: 500). WK, DELC

W'KR:W'K*R
PHIIY=J*sO.25DO*WKii(Yi-Y2)*(DBSJi(WKR)+Ji.DBSYi(W'KR))/R3 RETURN
END

CI C
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I

Appendix B: Numerically Generated Data For the Test Case

I The plots contained in this appendix were obtained from

i the computer program in Appendix A. The program is discussed

in Chapter 7 and some of the results are analyzed in the

U results section, Chapter 8.
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0.25, and Incident Plane Waves with Oi = 22.50, 45.00 and
67.5 .C.
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I Figure 19. Bistatic RCS of a Rectangular Cavity With a

Normalized Wave Number, k, Equal to 0.1, a Cavity Depth, d, of3 1.0, and an Incident Plane Wave With ei = o° .
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3 Figure 20. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, K, Equal to 10.0, a Cavity Depth, d, of
1.0, and an Incident Plane Wave With 6i= 0
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I Figure 21. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 0.1, a Cavity Depth, d9 of
1.0, and Incident Plane Waves with 0i 22.50, 45.00 and 67.50.
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i Figure 22. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 0.1, a Cavity Depth, d, of
4.0, and an Incident Plane Wave With ei = 00.
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Figure 23. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, R, Equal to 0.1, a Cavity Depth, d, ofI 4.0, and Incident Plane Waves with e1  22.50, 45.00 and 67.50.
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Figure 24. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 0.1, a Cavity Depth, d, of
8.0, and an Incident Plane Wave With Oi = o.
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Figure 25. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 0.1, a Cavity Depth, d, of

8.0, and Incident Plane Waves with Oe 22.50, 45.00 and 67.50.
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Figure 26. Bistatic; RCS of a Rectangular Cavity With aI Normalized Wave Number, R, Equal to 1.0, a Cavity Depth, dl, of
0.25, and an Incident Plane Wave With e1  00.
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I Figure 27. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, RC, Equal to 1.0, a Cavity Depth, d, of
0.25, and Incident Plane Waves with 8i 22.50, 45.00 andU 67 .50.
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Figure 28. Bistatic RCS of a Rectangular Cavity With a
I Normalized Wave Number, K, Equal to 1.0, a Cavity Depth, d, of

1.0, and an Incident Plane Wave With ei  00.
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Figure 29. Bistatic RCS of a Rectangular Cavity With aI Normalized Wave Number, KC, Equal to 1.0, a Cavity Depth, d, of

8.0, and an Incident Plane Wave With e1 = 0
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Figure 30. Bistatic RCS of a Rectangular Cavity With a

I Normalized Wave Number, k, Equal to i.0, a Cavity Depth, d, of

4.0, and an Incident Plane Wave With e i = 00.
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I Figure 32. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, dl, of3 0.25, and an Incident Plane Wave With Oi = 00.
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I Figure 33. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, ofI 0.25, and an Incident Plane Wave With Oi 22.50.
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Figure 34. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, ki Equal to 10.0, a Cavity Depth, d, of
0.25, and an Incident Plane Wave With ei = 450,
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I Figure 35. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k,. Equal to 10.0, a Cavity Depth, d, of
0.25, and an Incident Plane Wave With Oi 22.50, 450, and

67.50.
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I Figure 36. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, R, Equal to 10.0, a Cavity Depth, d, of
4.0, and an Incident Plane Wave With ei 22.50, 450, and

67. 50.
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FiL'ire 37. Bistatic RCS of a Rectangular Cavity With a

Normalized Wave Number, K, Equal to 10.0, a Cavity Depth, d, of

4.0, and an Incident Plane Wave With 8i 00.
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I Figure 38. Bistatic RCS of a Rectangular Cavity With a

Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of

i 4.0, and an Incident Plane Wave With ei = 22.50.
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I Figure 39. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of3 4.0, and an Incident Plane Wave With ei = 45.00.
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Figure 40. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, K, Equal to 10.0, a Cavity Depth, d, of
1.0, and an Incident Plane Wave With O i = 22.50, 450, and
67. 50.
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Figure 41. Bistatic RCS of a Rectangular Cavity With a

Normalized Wave Number, R, Equal to 10.0, a Cavity Depth, d, of

1.0, and an Incident Plane Wave With O i = 00

1
U
I
3 133

m



I
I
I

k= 10.0 d= 1.0 Incident Angle=22.50

220

3 24-

22-

20-3/

14-

* 12-

10-

6-

3 4-
2-

-40 -70 -G0 -30 -1O 10 30 aO 0 90

Distatic Scattering Angle (degrees)

I
Figure 42. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of
i.0, and an Incident Plane Wave With ei = 22.50.
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Figure 43. Bistatic RCS of a Rectangular Cavity With a

Normalized Wave Number, R, Equal to 10.0, a Cavity Depth, d, of

1.0, and an Incident Plane Wave With 0j = 45.00.
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Monostatic Scatter at OWith k=1.0
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Bistatic Scatter at 07450 With k=1.0
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I Figure 45. Bistatic RCS at 00/450 with Varying Depth and K~i.Q
Reciprocity is demonstrated again.
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3 Monostatic Scatter at O With k=6.0
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I Figure 47. Monostatic RCS at 450 with Varying Depth and k=6.0
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I Bistatic Scatter at 0745" With k=6.0
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Figure 48. Bistatic RCS at 00/450 with Varying Depth and R=6.0I Reciprocity is demonstrated once again.
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5 Appendix C: A Model for Obtaining Measurements

5 A scatterer has been designed for a physical problem

related to the example problem attacked in this thesis.

Perhaps a follow-on thesis could concentrate on the

measurements.

Measuring the fields scattered from the channel is not a

3 trivial matter. The plane on which the incident fields impinge

has been assumed, thus far, to be infinite. Such an infinite

3 plane that is also perfectly conducting cannot be constructed.

However, some approximations can be made to at least simplify

I those problems. Further, proper calibrations while making the

3 measurements will also help create accurate measurements.

If the plane containing the channel to be measured cannot

3 be infinite, then it should be very large; but how large? If

the edges of the plane are in the far field, then it should be

Isufficiently large enough for the incident wave to "see" a

cavity in an "infinite" plane. The far field is loosely

defined as a distance, r, such that (22:21)

I 2nr >> X

3For most practical applications, the far field begins at about

t0 from the scatterer (9). In this problem, the scatterer

Iis the cavity. If the edges of the plane were at least OX

3from the cavity center, they may be considered to be infinite.
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The assumption of infinite conductivity needs to be

5 considered when making measurements. Though perfect conductors

do exist (i.e. superconductors), it is not yet practical to use

3 them in most applications. A good approximation to a perfect

conductor for problems of this type would be any "good"

Iconductor. Aluminum is a good conductor (ti). For measurement

purposes it can be considered to be a PEC (9). A plane and

cavity made of aluminum can therefore be approximated as

3perfect conductors.
When making the measurements, the system needs to be

IcAlibrated to nullify anomalies that may exist within the

5system (such as transmitter/receiver peculiarities, mounting
scatter, etc.). If the system were calibrated using the above

3plane without the cavity, then most of the edge effects of the

plane itself can be subtracted from the measurements along with

Ithe system anomalies. This will mostly leave only measurements

3 of the fields due to the cavity alone. This is the same

quantity, the integral in Eq (76), that has been calculated and

plotted in the earlier sections of this thesis.

Using the described target and the described technique, it

Ushould be possible to duplicate the data plotted in the last

section. The target has been designed and built and is the

property of the Air Force Institute of Technology; to date, no

5measurements have been made.
In addition to a very large aluminum plane, an adjustable

Ichannel width and depth is also desired. Using all of the

It42
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above information, a drawing of the target that has been

3 designed and built is given in Figure 49. The measurements

given were derived assuming a measuring frequency between 8 GHz

I nland i2.4 GHz but the target may be used at other frequencies

due to its adjustability.

I

I I
Io

32"I

51-In

Figure 49. Target Designed to Produce Measurements for
Comparison With the Calculated Data. The Target is Made of
Aluminum and has Adjustable Rectangular Cavity Width and Depth.
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Abstract I

The purpose of this thesis is to determine the scattered

electrcmagnetic fields and radar cross section from a two-

dimensional cavity in a perfectly electric conducting infinite

plane. This is acccaplished by deriving a coupled set of Fredholn

integral equations of the second kind. A set of integral equations

outside the cavity and a set of integral equations inside the cavity

are coupled together at the interface. The Fredholm integral equations

of the second kind for the outside of the cavity use a Green's function

with Nermann boundary conditions to avoid an integration over

the infinite plane for a transverse electric incident plane wave.

An example problem is introduced and numerically solved to test

the application of the newly derived equations. /
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